MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatl Structured version   Visualization version   Unicode version

Theorem clatl 17116
Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5219 to shorten proof and eliminate joindmss 17007 and meetdmss 17021?
Assertion
Ref Expression
clatl  |-  ( K  e.  CLat  ->  K  e. 
Lat )

Proof of Theorem clatl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2622 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
3 simpl 473 . . . . . . 7  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  ->  K  e.  Poset )
41, 2, 3joindmss 17007 . . . . . 6  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  ->  dom  ( join `  K
)  C_  ( ( Base `  K )  X.  ( Base `  K
) ) )
5 relxp 5227 . . . . . . . 8  |-  Rel  (
( Base `  K )  X.  ( Base `  K
) )
65a1i 11 . . . . . . 7  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  ->  Rel  ( ( Base `  K
)  X.  ( Base `  K ) ) )
7 opelxp 5146 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( ( Base `  K
)  X.  ( Base `  K ) )  <->  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )
8 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
9 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
108, 9prss 4351 . . . . . . . . . . . 12  |-  ( ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  <->  { x ,  y }  C_  ( Base `  K )
)
117, 10sylbb 209 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  ( ( Base `  K
)  X.  ( Base `  K ) )  ->  { x ,  y }  C_  ( Base `  K ) )
12 prex 4909 . . . . . . . . . . . 12  |-  { x ,  y }  e.  _V
1312elpw 4164 . . . . . . . . . . 11  |-  ( { x ,  y }  e.  ~P ( Base `  K )  <->  { x ,  y }  C_  ( Base `  K )
)
1411, 13sylibr 224 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( ( Base `  K
)  X.  ( Base `  K ) )  ->  { x ,  y }  e.  ~P ( Base `  K ) )
15 eleq2 2690 . . . . . . . . . 10  |-  ( dom  ( lub `  K
)  =  ~P ( Base `  K )  -> 
( { x ,  y }  e.  dom  ( lub `  K )  <->  { x ,  y }  e.  ~P ( Base `  K ) ) )
1614, 15syl5ibr 236 . . . . . . . . 9  |-  ( dom  ( lub `  K
)  =  ~P ( Base `  K )  -> 
( <. x ,  y
>.  e.  ( ( Base `  K )  X.  ( Base `  K ) )  ->  { x ,  y }  e.  dom  ( lub `  K ) ) )
1716adantl 482 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  -> 
( <. x ,  y
>.  e.  ( ( Base `  K )  X.  ( Base `  K ) )  ->  { x ,  y }  e.  dom  ( lub `  K ) ) )
18 eqid 2622 . . . . . . . . 9  |-  ( lub `  K )  =  ( lub `  K )
198a1i 11 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  ->  x  e.  _V )
209a1i 11 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  -> 
y  e.  _V )
2118, 2, 3, 19, 20joindef 17004 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  -> 
( <. x ,  y
>.  e.  dom  ( join `  K )  <->  { x ,  y }  e.  dom  ( lub `  K
) ) )
2217, 21sylibrd 249 . . . . . . 7  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  -> 
( <. x ,  y
>.  e.  ( ( Base `  K )  X.  ( Base `  K ) )  ->  <. x ,  y
>.  e.  dom  ( join `  K ) ) )
236, 22relssdv 5212 . . . . . 6  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  -> 
( ( Base `  K
)  X.  ( Base `  K ) )  C_  dom  ( join `  K
) )
244, 23eqssd 3620 . . . . 5  |-  ( ( K  e.  Poset  /\  dom  ( lub `  K )  =  ~P ( Base `  K ) )  ->  dom  ( join `  K
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
2524ex 450 . . . 4  |-  ( K  e.  Poset  ->  ( dom  ( lub `  K )  =  ~P ( Base `  K )  ->  dom  ( join `  K )  =  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
26 eqid 2622 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
27 simpl 473 . . . . . . 7  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  ->  K  e.  Poset )
281, 26, 27meetdmss 17021 . . . . . 6  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  ->  dom  ( meet `  K
)  C_  ( ( Base `  K )  X.  ( Base `  K
) ) )
295a1i 11 . . . . . . 7  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  ->  Rel  ( ( Base `  K
)  X.  ( Base `  K ) ) )
30 eleq2 2690 . . . . . . . . . 10  |-  ( dom  ( glb `  K
)  =  ~P ( Base `  K )  -> 
( { x ,  y }  e.  dom  ( glb `  K )  <->  { x ,  y }  e.  ~P ( Base `  K ) ) )
3114, 30syl5ibr 236 . . . . . . . . 9  |-  ( dom  ( glb `  K
)  =  ~P ( Base `  K )  -> 
( <. x ,  y
>.  e.  ( ( Base `  K )  X.  ( Base `  K ) )  ->  { x ,  y }  e.  dom  ( glb `  K ) ) )
3231adantl 482 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  -> 
( <. x ,  y
>.  e.  ( ( Base `  K )  X.  ( Base `  K ) )  ->  { x ,  y }  e.  dom  ( glb `  K ) ) )
33 eqid 2622 . . . . . . . . 9  |-  ( glb `  K )  =  ( glb `  K )
348a1i 11 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  ->  x  e.  _V )
359a1i 11 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  -> 
y  e.  _V )
3633, 26, 27, 34, 35meetdef 17018 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  -> 
( <. x ,  y
>.  e.  dom  ( meet `  K )  <->  { x ,  y }  e.  dom  ( glb `  K
) ) )
3732, 36sylibrd 249 . . . . . . 7  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  -> 
( <. x ,  y
>.  e.  ( ( Base `  K )  X.  ( Base `  K ) )  ->  <. x ,  y
>.  e.  dom  ( meet `  K ) ) )
3829, 37relssdv 5212 . . . . . 6  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  -> 
( ( Base `  K
)  X.  ( Base `  K ) )  C_  dom  ( meet `  K
) )
3928, 38eqssd 3620 . . . . 5  |-  ( ( K  e.  Poset  /\  dom  ( glb `  K )  =  ~P ( Base `  K ) )  ->  dom  ( meet `  K
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
4039ex 450 . . . 4  |-  ( K  e.  Poset  ->  ( dom  ( glb `  K )  =  ~P ( Base `  K )  ->  dom  ( meet `  K )  =  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
4125, 40anim12d 586 . . 3  |-  ( K  e.  Poset  ->  ( ( dom  ( lub `  K
)  =  ~P ( Base `  K )  /\  dom  ( glb `  K
)  =  ~P ( Base `  K ) )  ->  ( dom  ( join `  K )  =  ( ( Base `  K
)  X.  ( Base `  K ) )  /\  dom  ( meet `  K
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) ) ) )
4241imdistani 726 . 2  |-  ( ( K  e.  Poset  /\  ( dom  ( lub `  K
)  =  ~P ( Base `  K )  /\  dom  ( glb `  K
)  =  ~P ( Base `  K ) ) )  ->  ( K  e.  Poset  /\  ( dom  ( join `  K )  =  ( ( Base `  K )  X.  ( Base `  K ) )  /\  dom  ( meet `  K )  =  ( ( Base `  K
)  X.  ( Base `  K ) ) ) ) )
431, 18, 33isclat 17109 . 2  |-  ( K  e.  CLat  <->  ( K  e. 
Poset  /\  ( dom  ( lub `  K )  =  ~P ( Base `  K
)  /\  dom  ( glb `  K )  =  ~P ( Base `  K )
) ) )
441, 2, 26islat 17047 . 2  |-  ( K  e.  Lat  <->  ( K  e.  Poset  /\  ( dom  ( join `  K )  =  ( ( Base `  K )  X.  ( Base `  K ) )  /\  dom  ( meet `  K )  =  ( ( Base `  K
)  X.  ( Base `  K ) ) ) ) )
4542, 43, 443imtr4i 281 1  |-  ( K  e.  CLat  ->  K  e. 
Lat )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   {cpr 4179   <.cop 4183    X. cxp 5112   dom cdm 5114   Rel wrel 5119   ` cfv 5888   Basecbs 15857   Posetcpo 16940   lubclub 16942   glbcglb 16943   joincjn 16944   meetcmee 16945   Latclat 17045   CLatccla 17107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-oprab 6654  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-clat 17108
This theorem is referenced by:  lubel  17122  lubun  17123  clatleglb  17126
  Copyright terms: Public domain W3C validator