MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldcls Structured version   Visualization version   GIF version

Theorem cldcls 20846
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)

Proof of Theorem cldcls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 20830 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 eqid 2622 . . . 4 𝐽 = 𝐽
32cldss 20833 . . 3 (𝑆 ∈ (Clsd‘𝐽) → 𝑆 𝐽)
42clsval 20841 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
51, 3, 4syl2anc 693 . 2 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
6 intmin 4497 . 2 (𝑆 ∈ (Clsd‘𝐽) → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥} = 𝑆)
75, 6eqtrd 2656 1 (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  wss 3574   cuni 4436   cint 4475  cfv 5888  Topctop 20698  Clsdccld 20820  clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825
This theorem is referenced by:  iscld3  20868  clsss2  20876  cncls2  21077  lmcld  21107  fclscmp  21834  metnrmlem1a  22661  lebnumlem1  22760  cmetss  23113  minveclem4  23203  hauseqcn  29941
  Copyright terms: Public domain W3C validator