![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmcld | Structured version Visualization version GIF version |
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013.) |
Ref | Expression |
---|---|
lmff.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmff.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
lmff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmcls.5 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcls.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) |
lmcld.8 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
lmcld | ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmff.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | lmff.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | lmff.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | lmcls.5 | . . 3 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
5 | lmcls.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑆) | |
6 | lmcld.8 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) | |
7 | eqid 2622 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
8 | 7 | cldss 20833 | . . . . 5 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
9 | 6, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
10 | toponuni 20719 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
12 | 9, 11 | sseqtr4d 3642 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
13 | 1, 2, 3, 4, 5, 12 | lmcls 21106 | . 2 ⊢ (𝜑 → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
14 | cldcls 20846 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | |
15 | 6, 14 | syl 17 | . 2 ⊢ (𝜑 → ((cls‘𝐽)‘𝑆) = 𝑆) |
16 | 13, 15 | eleqtrd 2703 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 ℤcz 11377 ℤ≥cuz 11687 TopOnctopon 20715 Clsdccld 20820 clsccl 20822 ⇝𝑡clm 21030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 df-top 20699 df-topon 20716 df-cld 20823 df-ntr 20824 df-cls 20825 df-lm 21033 |
This theorem is referenced by: 1stckgen 21357 lmle 23099 |
Copyright terms: Public domain | W3C validator |