Proof of Theorem metnrmlem1a
Step | Hyp | Ref
| Expression |
1 | | metnrmlem.4 |
. . . . . 6
⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (𝑆 ∩ 𝑇) = ∅) |
3 | | inelcm 4032 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐴 ∈ 𝑇) → (𝑆 ∩ 𝑇) ≠ ∅) |
4 | 3 | expcom 451 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑇 → (𝐴 ∈ 𝑆 → (𝑆 ∩ 𝑇) ≠ ∅)) |
5 | 4 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (𝐴 ∈ 𝑆 → (𝑆 ∩ 𝑇) ≠ ∅)) |
6 | 5 | necon2bd 2810 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → ((𝑆 ∩ 𝑇) = ∅ → ¬ 𝐴 ∈ 𝑆)) |
7 | 2, 6 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → ¬ 𝐴 ∈ 𝑆) |
8 | | eqcom 2629 |
. . . . . 6
⊢ (0 =
(𝐹‘𝐴) ↔ (𝐹‘𝐴) = 0) |
9 | | metnrmlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝐷 ∈ (∞Met‘𝑋)) |
11 | | metnrmlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) |
12 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑆 ∈ (Clsd‘𝐽)) |
13 | | eqid 2622 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
14 | 13 | cldss 20833 |
. . . . . . . . 9
⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ ∪ 𝐽) |
15 | 12, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ ∪ 𝐽) |
16 | | metdscn.j |
. . . . . . . . . 10
⊢ 𝐽 = (MetOpen‘𝐷) |
17 | 16 | mopnuni 22246 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
18 | 10, 17 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑋 = ∪ 𝐽) |
19 | 15, 18 | sseqtr4d 3642 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑆 ⊆ 𝑋) |
20 | | metnrmlem.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) |
21 | 20 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ (Clsd‘𝐽)) |
22 | 13 | cldss 20833 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (Clsd‘𝐽) → 𝑇 ⊆ ∪ 𝐽) |
23 | 21, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ ∪ 𝐽) |
24 | 23, 18 | sseqtr4d 3642 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝑇 ⊆ 𝑋) |
25 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
26 | 24, 25 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ 𝑋) |
27 | | metdscn.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, <
)) |
28 | 27, 16 | metdseq0 22657 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) |
29 | 10, 19, 26, 28 | syl3anc 1326 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → ((𝐹‘𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) |
30 | 8, 29 | syl5bb 272 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 = (𝐹‘𝐴) ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) |
31 | | cldcls 20846 |
. . . . . . 7
⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) |
32 | 12, 31 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → ((cls‘𝐽)‘𝑆) = 𝑆) |
33 | 32 | eleq2d 2687 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝐴 ∈ 𝑆)) |
34 | 30, 33 | bitrd 268 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 = (𝐹‘𝐴) ↔ 𝐴 ∈ 𝑆)) |
35 | 7, 34 | mtbird 315 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → ¬ 0 = (𝐹‘𝐴)) |
36 | 27 | metdsf 22651 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
37 | 10, 19, 36 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 𝐹:𝑋⟶(0[,]+∞)) |
38 | 37, 26 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (𝐹‘𝐴) ∈ (0[,]+∞)) |
39 | | elxrge0 12281 |
. . . . . . 7
⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝐴))) |
40 | 39 | simprbi 480 |
. . . . . 6
⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
41 | 38, 40 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 0 ≤ (𝐹‘𝐴)) |
42 | | 0xr 10086 |
. . . . . 6
⊢ 0 ∈
ℝ* |
43 | 39 | simplbi 476 |
. . . . . . 7
⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈
ℝ*) |
44 | 38, 43 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (𝐹‘𝐴) ∈
ℝ*) |
45 | | xrleloe 11977 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ (𝐹‘𝐴) ∈ ℝ*) → (0 ≤
(𝐹‘𝐴) ↔ (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴)))) |
46 | 42, 44, 45 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 ≤ (𝐹‘𝐴) ↔ (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴)))) |
47 | 41, 46 | mpbid 222 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 < (𝐹‘𝐴) ∨ 0 = (𝐹‘𝐴))) |
48 | 47 | ord 392 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (¬ 0 < (𝐹‘𝐴) → 0 = (𝐹‘𝐴))) |
49 | 35, 48 | mt3d 140 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 0 < (𝐹‘𝐴)) |
50 | | 1re 10039 |
. . . . . 6
⊢ 1 ∈
ℝ |
51 | 50 | rexri 10097 |
. . . . 5
⊢ 1 ∈
ℝ* |
52 | | ifcl 4130 |
. . . . 5
⊢ ((1
∈ ℝ* ∧ (𝐹‘𝐴) ∈ ℝ*) → if(1
≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈
ℝ*) |
53 | 51, 44, 52 | sylancr 695 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈
ℝ*) |
54 | | 1red 10055 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 1 ∈ ℝ) |
55 | | 0lt1 10550 |
. . . . . 6
⊢ 0 <
1 |
56 | | breq2 4657 |
. . . . . . 7
⊢ (1 = if(1
≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) → (0 < 1 ↔ 0 < if(1 ≤
(𝐹‘𝐴), 1, (𝐹‘𝐴)))) |
57 | | breq2 4657 |
. . . . . . 7
⊢ ((𝐹‘𝐴) = if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) → (0 < (𝐹‘𝐴) ↔ 0 < if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)))) |
58 | 56, 57 | ifboth 4124 |
. . . . . 6
⊢ ((0 <
1 ∧ 0 < (𝐹‘𝐴)) → 0 < if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴))) |
59 | 55, 49, 58 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 0 < if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴))) |
60 | | xrltle 11982 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ*) → (0
< if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) → 0 ≤ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)))) |
61 | 42, 53, 60 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 < if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) → 0 ≤ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)))) |
62 | 59, 61 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → 0 ≤ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴))) |
63 | | xrmin1 12008 |
. . . . 5
⊢ ((1
∈ ℝ* ∧ (𝐹‘𝐴) ∈ ℝ*) → if(1
≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ≤ 1) |
64 | 51, 44, 63 | sylancr 695 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ≤ 1) |
65 | | xrrege0 12005 |
. . . 4
⊢ (((if(1
≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ* ∧ 1 ∈
ℝ) ∧ (0 ≤ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∧ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ≤ 1)) → if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ) |
66 | 53, 54, 62, 64, 65 | syl22anc 1327 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ) |
67 | 66, 59 | elrpd 11869 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈
ℝ+) |
68 | 49, 67 | jca 554 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 < (𝐹‘𝐴) ∧ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈
ℝ+)) |