Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hauseqcn Structured version   Visualization version   GIF version

Theorem hauseqcn 29941
Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.)
Hypotheses
Ref Expression
hauseqcn.x 𝑋 = 𝐽
hauseqcn.k (𝜑𝐾 ∈ Haus)
hauseqcn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqcn.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
hauseqcn.e (𝜑 → (𝐹𝐴) = (𝐺𝐴))
hauseqcn.a (𝜑𝐴𝑋)
hauseqcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
hauseqcn (𝜑𝐹 = 𝐺)

Proof of Theorem hauseqcn
StepHypRef Expression
1 hauseqcn.x . . 3 𝑋 = 𝐽
2 hauseqcn.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 cntop1 21044 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
42, 3syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
5 dmin 5332 . . . . . 6 dom (𝐹𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺)
6 eqid 2622 . . . . . . . . . 10 𝐽 = 𝐽
7 eqid 2622 . . . . . . . . . 10 𝐾 = 𝐾
86, 7cnf 21050 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fdm 6051 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
102, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐽)
11 hauseqcn.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
126, 7cnf 21050 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
13 fdm 6051 . . . . . . . . 9 (𝐺: 𝐽 𝐾 → dom 𝐺 = 𝐽)
1411, 12, 133syl 18 . . . . . . . 8 (𝜑 → dom 𝐺 = 𝐽)
1510, 14ineq12d 3815 . . . . . . 7 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = ( 𝐽 𝐽))
16 inidm 3822 . . . . . . 7 ( 𝐽 𝐽) = 𝐽
1715, 16syl6eq 2672 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝐽)
185, 17syl5sseq 3653 . . . . 5 (𝜑 → dom (𝐹𝐺) ⊆ 𝐽)
19 hauseqcn.e . . . . . 6 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
20 ffn 6045 . . . . . . . 8 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
212, 8, 203syl 18 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
22 ffn 6045 . . . . . . . 8 (𝐺: 𝐽 𝐾𝐺 Fn 𝐽)
2311, 12, 223syl 18 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
24 hauseqcn.a . . . . . . . 8 (𝜑𝐴𝑋)
2524, 1syl6sseq 3651 . . . . . . 7 (𝜑𝐴 𝐽)
26 fnreseql 6327 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽𝐴 𝐽) → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2721, 23, 25, 26syl3anc 1326 . . . . . 6 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2819, 27mpbid 222 . . . . 5 (𝜑𝐴 ⊆ dom (𝐹𝐺))
296clsss 20858 . . . . 5 ((𝐽 ∈ Top ∧ dom (𝐹𝐺) ⊆ 𝐽𝐴 ⊆ dom (𝐹𝐺)) → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
304, 18, 28, 29syl3anc 1326 . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
31 hauseqcn.c . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
32 hauseqcn.k . . . . . 6 (𝜑𝐾 ∈ Haus)
3332, 2, 11hauseqlcld 21449 . . . . 5 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
34 cldcls 20846 . . . . 5 (dom (𝐹𝐺) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3533, 34syl 17 . . . 4 (𝜑 → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3630, 31, 353sstr3d 3647 . . 3 (𝜑𝑋 ⊆ dom (𝐹𝐺))
371, 36syl5eqssr 3650 . 2 (𝜑 𝐽 ⊆ dom (𝐹𝐺))
38 fneqeql2 6326 . . 3 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
3921, 23, 38syl2anc 693 . 2 (𝜑 → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
4037, 39mpbird 247 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  cin 3573  wss 3574   cuni 4436  dom cdm 5114  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Topctop 20698  Clsdccld 20820  clsccl 20822   Cn ccn 21028  Hauscha 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-cn 21031  df-haus 21119  df-tx 21365
This theorem is referenced by:  rrhre  30065
  Copyright terms: Public domain W3C validator