MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2i Structured version   Visualization version   GIF version

Theorem cncls2i 21074
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1 𝑌 = 𝐾
Assertion
Ref Expression
cncls2i ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))

Proof of Theorem cncls2i
StepHypRef Expression
1 cntop2 21045 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2 cncls2i.1 . . . . 5 𝑌 = 𝐾
32clscld 20851 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
41, 3sylan 488 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
5 cnclima 21072 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
64, 5syldan 487 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
72sscls 20860 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
81, 7sylan 488 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
9 imass2 5501 . . 3 (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
108, 9syl 17 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
11 eqid 2622 . . 3 𝐽 = 𝐽
1211clsss2 20876 . 2 (((𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
136, 10, 12syl2anc 693 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574   cuni 4436  ccnv 5113  cima 5117  cfv 5888  (class class class)co 6650  Topctop 20698  Clsdccld 20820  clsccl 20822   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-cn 21031
This theorem is referenced by:  cnclsi  21076  cncls2  21077  imasncls  21495  hmeocls  21571  clssubg  21912
  Copyright terms: Public domain W3C validator