MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasncls Structured version   Visualization version   GIF version

Theorem imasncls 21495
Description: If a relation graph is closed, then an image set of a singleton is also closed. Corollary of proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypotheses
Ref Expression
imasnopn.1 𝑋 = 𝐽
imasnopn.2 𝑌 = 𝐾
Assertion
Ref Expression
imasncls (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))

Proof of Theorem imasncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imasnopn.2 . . . . . . 7 𝑌 = 𝐾
21toptopon 20722 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
32biimpi 206 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
43ad2antlr 763 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
5 imasnopn.1 . . . . . . . 8 𝑋 = 𝐽
65toptopon 20722 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
76biimpi 206 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
87ad2antrr 762 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
9 simprr 796 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐴𝑋)
104, 8, 9cnmptc 21465 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐽))
114cnmptid 21464 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌𝑦) ∈ (𝐾 Cn 𝐾))
124, 10, 11cnmpt1t 21468 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
13 simprl 794 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝑌))
145, 1txuni 21395 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
1514adantr 481 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
1613, 15sseqtrd 3641 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
17 eqid 2622 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
1817cncls2i 21074 . . 3 (((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 (𝐽 ×t 𝐾)) → ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)) ⊆ ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
1912, 16, 18syl2anc 693 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)) ⊆ ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
20 nfv 1843 . . . . 5 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋))
21 nfcv 2764 . . . . 5 𝑦(𝑅 “ {𝐴})
22 nfrab1 3122 . . . . 5 𝑦{𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
23 imass1 5500 . . . . . . . . . . 11 (𝑅 ⊆ (𝑋 × 𝑌) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
2413, 23syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
25 xpimasn 5579 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑋 × 𝑌) “ {𝐴}) = 𝑌)
2625ad2antll 765 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑋 × 𝑌) “ {𝐴}) = 𝑌)
2724, 26sseqtrd 3641 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝑌)
2827sseld 3602 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦𝑌))
2928pm4.71rd 667 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦𝑌𝑦 ∈ (𝑅 “ {𝐴}))))
30 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
31 elimasng 5491 . . . . . . . . . 10 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3230, 31mpan2 707 . . . . . . . . 9 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3332ad2antll 765 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3433anbi2d 740 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑦𝑌𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
3529, 34bitrd 268 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
36 rabid 3116 . . . . . 6 (𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3735, 36syl6bbr 278 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
3820, 21, 22, 37eqrd 3622 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
39 eqid 2622 . . . . 5 (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) = (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩)
4039mptpreima 5628 . . . 4 ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4138, 40syl6eqr 2674 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
4241fveq2d 6195 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) = ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)))
43 nfcv 2764 . . . 4 𝑦(((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})
44 nfrab1 3122 . . . 4 𝑦{𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}
45 txtop 21372 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4645adantr 481 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
4717clsss3 20863 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 (𝐽 ×t 𝐾)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝐽 ×t 𝐾))
4846, 16, 47syl2anc 693 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝐽 ×t 𝐾))
4948, 15sseqtr4d 3642 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝑋 × 𝑌))
50 imass1 5500 . . . . . . . . . 10 (((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝑋 × 𝑌) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
5149, 50syl 17 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
5251, 26sseqtrd 3641 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ 𝑌)
5352sseld 3602 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) → 𝑦𝑌))
5453pm4.71rd 667 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ (𝑦𝑌𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))))
55 elimasng 5491 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5630, 55mpan2 707 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5756ad2antll 765 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5857anbi2d 740 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑦𝑌𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅))))
5954, 58bitrd 268 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅))))
60 rabid 3116 . . . . 5 (𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)} ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
6159, 60syl6bbr 278 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ 𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}))
6220, 43, 44, 61eqrd 3622 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)})
6339mptpreima 5628 . . 3 ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}
6462, 63syl6eqr 2674 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) = ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
6519, 42, 643sstr4d 3648 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  {csn 4177  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  ccnv 5113  cima 5117  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715  clsccl 20822   Cn ccn 21028   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-cn 21031  df-cnp 21032  df-tx 21365
This theorem is referenced by:  utopreg  22056
  Copyright terms: Public domain W3C validator