MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzssv Structured version   Visualization version   GIF version

Theorem cntzssv 17761
Description: The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b 𝐵 = (Base‘𝑀)
cntzrcl.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzssv (𝑍𝑆) ⊆ 𝐵

Proof of Theorem cntzssv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 3972 . . 3 ∅ ⊆ 𝐵
2 sseq1 3626 . . 3 ((𝑍𝑆) = ∅ → ((𝑍𝑆) ⊆ 𝐵 ↔ ∅ ⊆ 𝐵))
31, 2mpbiri 248 . 2 ((𝑍𝑆) = ∅ → (𝑍𝑆) ⊆ 𝐵)
4 n0 3931 . . 3 ((𝑍𝑆) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑍𝑆))
5 cntzrcl.b . . . . . . . 8 𝐵 = (Base‘𝑀)
6 cntzrcl.z . . . . . . . 8 𝑍 = (Cntz‘𝑀)
75, 6cntzrcl 17760 . . . . . . 7 (𝑥 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆𝐵))
87simprd 479 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → 𝑆𝐵)
9 eqid 2622 . . . . . . 7 (+g𝑀) = (+g𝑀)
105, 9, 6cntzval 17754 . . . . . 6 (𝑆𝐵 → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
118, 10syl 17 . . . . 5 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) = {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)})
12 ssrab2 3687 . . . . 5 {𝑥𝐵 ∣ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)} ⊆ 𝐵
1311, 12syl6eqss 3655 . . . 4 (𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
1413exlimiv 1858 . . 3 (∃𝑥 𝑥 ∈ (𝑍𝑆) → (𝑍𝑆) ⊆ 𝐵)
154, 14sylbi 207 . 2 ((𝑍𝑆) ≠ ∅ → (𝑍𝑆) ⊆ 𝐵)
163, 15pm2.61ine 2877 1 (𝑍𝑆) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-cntz 17750
This theorem is referenced by:  cntz2ss  17765  cntzsubm  17768  cntzsubg  17769  cntzidss  17770  cntzmhm  17771  cntzmhm2  17772  cntzcmn  18245  cntzspan  18247  cntzsubr  18812  cntzsdrg  37772
  Copyright terms: Public domain W3C validator