MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Structured version   Visualization version   GIF version

Theorem cntzsubr 18812
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b 𝐵 = (Base‘𝑅)
cntzsubr.m 𝑀 = (mulGrp‘𝑅)
cntzsubr.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubr ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))

Proof of Theorem cntzsubr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
2 cntzsubr.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2mgpbas 18495 . . . . 5 𝐵 = (Base‘𝑀)
4 cntzsubr.z . . . . 5 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 17761 . . . 4 (𝑍𝑆) ⊆ 𝐵
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
7 simpll 790 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
8 ssel2 3598 . . . . . . . . 9 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
98adantll 750 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑧𝐵)
10 eqid 2622 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2622 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
122, 10, 11ringlz 18587 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
137, 9, 12syl2anc 693 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
142, 10, 11ringrz 18588 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
157, 9, 14syl2anc 693 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
1613, 15eqtr4d 2659 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
1716ralrimiva 2966 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
18 simpr 477 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑆𝐵)
192, 11ring0cl 18569 . . . . . . 7 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
2019adantr 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ 𝐵)
211, 10mgpplusg 18493 . . . . . . 7 (.r𝑅) = (+g𝑀)
223, 21, 4cntzel 17756 . . . . . 6 ((𝑆𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2318, 20, 22syl2anc 693 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2417, 23mpbird 247 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ (𝑍𝑆))
25 ne0i 3921 . . . 4 ((0g𝑅) ∈ (𝑍𝑆) → (𝑍𝑆) ≠ ∅)
2624, 25syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ≠ ∅)
27 simpl2 1065 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
28 simpr 477 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝑆)
2921, 4cntzi 17762 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
3027, 28, 29syl2anc 693 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
31 simpl3 1066 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦 ∈ (𝑍𝑆))
3221, 4cntzi 17762 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3331, 28, 32syl2anc 693 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3430, 33oveq12d 6668 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
35 simpl1l 1112 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
365, 27sseldi 3601 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
375, 31sseldi 3601 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦𝐵)
38 simp1r 1086 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑆𝐵)
3938sselda 3603 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
40 eqid 2622 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
412, 40, 10ringdir 18567 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4235, 36, 37, 39, 41syl13anc 1328 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
432, 40, 10ringdi 18566 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4435, 39, 36, 37, 43syl13anc 1328 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4534, 42, 443eqtr4d 2666 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
4645ralrimiva 2966 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
47 simp1l 1085 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑅 ∈ Ring)
48 simp2 1062 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
495, 48sseldi 3601 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥𝐵)
50 simp3 1063 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦 ∈ (𝑍𝑆))
515, 50sseldi 3601 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦𝐵)
522, 40ringacl 18578 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
5347, 49, 51, 52syl3anc 1326 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
543, 21, 4cntzel 17756 . . . . . . . . 9 ((𝑆𝐵 ∧ (𝑥(+g𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5538, 53, 54syl2anc 693 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5646, 55mpbird 247 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
57563expa 1265 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5857ralrimiva 2966 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5929adantll 750 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
6059fveq2d 6195 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((invg𝑅)‘(𝑥(.r𝑅)𝑧)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
61 eqid 2622 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
62 simplll 798 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
63 simplr 792 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
645, 63sseldi 3601 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
65 simplr 792 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
6665sselda 3603 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
672, 10, 61, 62, 64, 66ringmneg1 18596 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = ((invg𝑅)‘(𝑥(.r𝑅)𝑧)))
682, 10, 61, 62, 66, 64ringmneg2 18597 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)((invg𝑅)‘𝑥)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
6960, 67, 683eqtr4d 2666 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
7069ralrimiva 2966 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
71 ringgrp 18552 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7271ad2antrr 762 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑅 ∈ Grp)
73 simpr 477 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
745, 73sseldi 3601 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
752, 61grpinvcl 17467 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑅)‘𝑥) ∈ 𝐵)
7672, 74, 75syl2anc 693 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ 𝐵)
773, 21, 4cntzel 17756 . . . . . . 7 ((𝑆𝐵 ∧ ((invg𝑅)‘𝑥) ∈ 𝐵) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7865, 76, 77syl2anc 693 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7970, 78mpbird 247 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ (𝑍𝑆))
8058, 79jca 554 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8180ralrimiva 2966 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8271adantr 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑅 ∈ Grp)
832, 40, 61issubg2 17609 . . . 4 (𝑅 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
8482, 83syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
856, 26, 81, 84mpbir3and 1245 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑅))
861ringmgp 18553 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
873, 4cntzsubm 17768 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
8886, 87sylan 488 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
891issubrg3 18808 . . 3 (𝑅 ∈ Ring → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
9089adantr 481 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
9185, 88, 90mpbir2and 957 1 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  Mndcmnd 17294  SubMndcsubmnd 17334  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588  Cntzccntz 17748  mulGrpcmgp 18489  Ringcrg 18547  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778
This theorem is referenced by:  cntzsdrg  37772
  Copyright terms: Public domain W3C validator