MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubg Structured version   Visualization version   GIF version

Theorem cntzsubg 17769
Description: Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubg ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))

Proof of Theorem cntzsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpmnd 17429 . . 3 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
3 cntzrec.z . . . 4 𝑍 = (Cntz‘𝑀)
42, 3cntzsubm 17768 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
51, 4sylan 488 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
6 simpll 790 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑀 ∈ Grp)
72, 3cntzssv 17761 . . . . . . . . . . . . 13 (𝑍𝑆) ⊆ 𝐵
8 simprl 794 . . . . . . . . . . . . 13 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑥 ∈ (𝑍𝑆))
97, 8sseldi 3601 . . . . . . . . . . . 12 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑥𝐵)
10 eqid 2622 . . . . . . . . . . . . 13 (invg𝑀) = (invg𝑀)
112, 10grpinvcl 17467 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑀)‘𝑥) ∈ 𝐵)
126, 9, 11syl2anc 693 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((invg𝑀)‘𝑥) ∈ 𝐵)
13 ssel2 3598 . . . . . . . . . . . 12 ((𝑆𝐵𝑦𝑆) → 𝑦𝐵)
1413ad2ant2l 782 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑦𝐵)
15 eqid 2622 . . . . . . . . . . . . 13 (+g𝑀) = (+g𝑀)
162, 15grpcl 17430 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
176, 9, 12, 16syl3anc 1326 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
182, 15grpass 17431 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥) ∈ 𝐵𝑦𝐵 ∧ (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
196, 12, 14, 17, 18syl13anc 1328 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
202, 15grpass 17431 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ (𝑦𝐵𝑥𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))))
216, 14, 9, 12, 20syl13anc 1328 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))))
2221oveq2d 6666 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
2319, 22eqtr4d 2659 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))))
2415, 3cntzi 17762 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2524adantl 482 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2625oveq1d 6665 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)))
2726oveq2d 6666 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))))
2823, 27eqtr4d 2659 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))))
292, 15grpcl 17430 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
306, 14, 12, 29syl3anc 1326 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
312, 15grpass 17431 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥) ∈ 𝐵𝑥𝐵 ∧ (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
326, 12, 9, 30, 31syl13anc 1328 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
332, 15grpass 17431 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ (𝑥𝐵𝑦𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
346, 9, 14, 12, 33syl13anc 1328 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
3534oveq2d 6666 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
3632, 35eqtr4d 2659 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))))
3728, 36eqtr4d 2659 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
38 eqid 2622 . . . . . . . . . . 11 (0g𝑀) = (0g𝑀)
392, 15, 38, 10grprinv 17469 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) = (0g𝑀))
406, 9, 39syl2anc 693 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) = (0g𝑀))
4140oveq2d 6666 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)))
422, 15grpcl 17430 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ ((invg𝑀)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵)
436, 12, 14, 42syl3anc 1326 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵)
442, 15, 38grprid 17453 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
456, 43, 44syl2anc 693 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
4641, 45eqtrd 2656 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
472, 15, 38, 10grplinv 17468 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → (((invg𝑀)‘𝑥)(+g𝑀)𝑥) = (0g𝑀))
486, 9, 47syl2anc 693 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑥) = (0g𝑀))
4948oveq1d 6665 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
502, 15, 38grplid 17452 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵) → ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
516, 30, 50syl2anc 693 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5249, 51eqtrd 2656 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5337, 46, 523eqtr3d 2664 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5453anassrs 680 . . . . 5 ((((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦𝑆) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5554ralrimiva 2966 . . . 4 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
56 simplr 792 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
57 simpll 790 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑀 ∈ Grp)
58 simpr 477 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
597, 58sseldi 3601 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
6057, 59, 11syl2anc 693 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑀)‘𝑥) ∈ 𝐵)
612, 15, 3cntzel 17756 . . . . 5 ((𝑆𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (((invg𝑀)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥))))
6256, 60, 61syl2anc 693 . . . 4 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑀)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥))))
6355, 62mpbird 247 . . 3 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑀)‘𝑥) ∈ (𝑍𝑆))
6463ralrimiva 2966 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))
6510issubg3 17612 . . 3 (𝑀 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))))
6665adantr 481 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))))
675, 64, 66mpbir2and 957 1 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  SubMndcsubmnd 17334  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-cntz 17750
This theorem is referenced by:  cntrnsg  17774  lsmcntz  18092  dprdz  18429  dprdcntz2  18437  dmdprdsplit2lem  18444  cntzsdrg  37772
  Copyright terms: Public domain W3C validator