Proof of Theorem cnvrcl0
| Step | Hyp | Ref
| Expression |
| 1 | | cnvresid 5968 |
. . . . . . 7
⊢ ◡( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom 𝑦 ∪ ran 𝑦)) |
| 2 | | cnvnonrel 37894 |
. . . . . . . . . . . . . . . 16
⊢ ◡(𝑋 ∖ ◡◡𝑋) = ∅ |
| 3 | | cnv0 5535 |
. . . . . . . . . . . . . . . 16
⊢ ◡∅ = ∅ |
| 4 | 2, 3 | eqtr4i 2647 |
. . . . . . . . . . . . . . 15
⊢ ◡(𝑋 ∖ ◡◡𝑋) = ◡∅ |
| 5 | 4 | dmeqi 5325 |
. . . . . . . . . . . . . 14
⊢ dom ◡(𝑋 ∖ ◡◡𝑋) = dom ◡∅ |
| 6 | | df-rn 5125 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑋 ∖ ◡◡𝑋) = dom ◡(𝑋 ∖ ◡◡𝑋) |
| 7 | | df-rn 5125 |
. . . . . . . . . . . . . 14
⊢ ran
∅ = dom ◡∅ |
| 8 | 5, 6, 7 | 3eqtr4i 2654 |
. . . . . . . . . . . . 13
⊢ ran
(𝑋 ∖ ◡◡𝑋) = ran ∅ |
| 9 | | 0ss 3972 |
. . . . . . . . . . . . . 14
⊢ ∅
⊆ ◡𝑦 |
| 10 | | rnss 5354 |
. . . . . . . . . . . . . 14
⊢ (∅
⊆ ◡𝑦 → ran ∅ ⊆ ran ◡𝑦) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ran
∅ ⊆ ran ◡𝑦 |
| 12 | 8, 11 | eqsstri 3635 |
. . . . . . . . . . . 12
⊢ ran
(𝑋 ∖ ◡◡𝑋) ⊆ ran ◡𝑦 |
| 13 | | ssequn2 3786 |
. . . . . . . . . . . 12
⊢ (ran
(𝑋 ∖ ◡◡𝑋) ⊆ ran ◡𝑦 ↔ (ran ◡𝑦 ∪ ran (𝑋 ∖ ◡◡𝑋)) = ran ◡𝑦) |
| 14 | 12, 13 | mpbi 220 |
. . . . . . . . . . 11
⊢ (ran
◡𝑦 ∪ ran (𝑋 ∖ ◡◡𝑋)) = ran ◡𝑦 |
| 15 | | rnun 5541 |
. . . . . . . . . . 11
⊢ ran
(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) = (ran ◡𝑦 ∪ ran (𝑋 ∖ ◡◡𝑋)) |
| 16 | | dfdm4 5316 |
. . . . . . . . . . 11
⊢ dom 𝑦 = ran ◡𝑦 |
| 17 | 14, 15, 16 | 3eqtr4ri 2655 |
. . . . . . . . . 10
⊢ dom 𝑦 = ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
| 18 | 4 | rneqi 5352 |
. . . . . . . . . . . . . 14
⊢ ran ◡(𝑋 ∖ ◡◡𝑋) = ran ◡∅ |
| 19 | | dfdm4 5316 |
. . . . . . . . . . . . . 14
⊢ dom
(𝑋 ∖ ◡◡𝑋) = ran ◡(𝑋 ∖ ◡◡𝑋) |
| 20 | | dfdm4 5316 |
. . . . . . . . . . . . . 14
⊢ dom
∅ = ran ◡∅ |
| 21 | 18, 19, 20 | 3eqtr4i 2654 |
. . . . . . . . . . . . 13
⊢ dom
(𝑋 ∖ ◡◡𝑋) = dom ∅ |
| 22 | | dmss 5323 |
. . . . . . . . . . . . . 14
⊢ (∅
⊆ ◡𝑦 → dom ∅ ⊆ dom ◡𝑦) |
| 23 | 9, 22 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ dom
∅ ⊆ dom ◡𝑦 |
| 24 | 21, 23 | eqsstri 3635 |
. . . . . . . . . . . 12
⊢ dom
(𝑋 ∖ ◡◡𝑋) ⊆ dom ◡𝑦 |
| 25 | | ssequn2 3786 |
. . . . . . . . . . . 12
⊢ (dom
(𝑋 ∖ ◡◡𝑋) ⊆ dom ◡𝑦 ↔ (dom ◡𝑦 ∪ dom (𝑋 ∖ ◡◡𝑋)) = dom ◡𝑦) |
| 26 | 24, 25 | mpbi 220 |
. . . . . . . . . . 11
⊢ (dom
◡𝑦 ∪ dom (𝑋 ∖ ◡◡𝑋)) = dom ◡𝑦 |
| 27 | | dmun 5331 |
. . . . . . . . . . 11
⊢ dom
(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) = (dom ◡𝑦 ∪ dom (𝑋 ∖ ◡◡𝑋)) |
| 28 | | df-rn 5125 |
. . . . . . . . . . 11
⊢ ran 𝑦 = dom ◡𝑦 |
| 29 | 26, 27, 28 | 3eqtr4ri 2655 |
. . . . . . . . . 10
⊢ ran 𝑦 = dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
| 30 | 17, 29 | uneq12i 3765 |
. . . . . . . . 9
⊢ (dom
𝑦 ∪ ran 𝑦) = (ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 31 | 30 | equncomi 3759 |
. . . . . . . 8
⊢ (dom
𝑦 ∪ ran 𝑦) = (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 32 | 31 | reseq2i 5393 |
. . . . . . 7
⊢ ( I
↾ (dom 𝑦 ∪ ran
𝑦)) = ( I ↾ (dom
(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 33 | 1, 32 | eqtr2i 2645 |
. . . . . 6
⊢ ( I
↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) = ◡( I ↾ (dom 𝑦 ∪ ran 𝑦)) |
| 34 | | cnvss 5294 |
. . . . . 6
⊢ (( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 → ◡( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ ◡𝑦) |
| 35 | 33, 34 | syl5eqss 3649 |
. . . . 5
⊢ (( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 → ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ ◡𝑦) |
| 36 | | ssun1 3776 |
. . . . 5
⊢ ◡𝑦 ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
| 37 | 35, 36 | syl6ss 3615 |
. . . 4
⊢ (( I
↾ (dom 𝑦 ∪ ran
𝑦)) ⊆ 𝑦 → ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 38 | | dmeq 5324 |
. . . . . . 7
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → dom 𝑥 = dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 39 | | rneq 5351 |
. . . . . . 7
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ran 𝑥 = ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 40 | 38, 39 | uneq12d 3768 |
. . . . . 6
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (dom 𝑥 ∪ ran 𝑥) = (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 41 | 40 | reseq2d 5396 |
. . . . 5
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))))) |
| 42 | | id 22 |
. . . . 5
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 43 | 41, 42 | sseq12d 3634 |
. . . 4
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∪ ran (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 44 | 37, 43 | syl5ibr 236 |
. . 3
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) |
| 45 | 44 | adantl 482 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) |
| 46 | | cnvresid 5968 |
. . . . . 6
⊢ ◡( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
| 47 | | dfdm4 5316 |
. . . . . . . . 9
⊢ dom 𝑥 = ran ◡𝑥 |
| 48 | | df-rn 5125 |
. . . . . . . . 9
⊢ ran 𝑥 = dom ◡𝑥 |
| 49 | 47, 48 | uneq12i 3765 |
. . . . . . . 8
⊢ (dom
𝑥 ∪ ran 𝑥) = (ran ◡𝑥 ∪ dom ◡𝑥) |
| 50 | 49 | equncomi 3759 |
. . . . . . 7
⊢ (dom
𝑥 ∪ ran 𝑥) = (dom ◡𝑥 ∪ ran ◡𝑥) |
| 51 | 50 | reseq2i 5393 |
. . . . . 6
⊢ ( I
↾ (dom 𝑥 ∪ ran
𝑥)) = ( I ↾ (dom
◡𝑥 ∪ ran ◡𝑥)) |
| 52 | 46, 51 | eqtr2i 2645 |
. . . . 5
⊢ ( I
↾ (dom ◡𝑥 ∪ ran ◡𝑥)) = ◡( I ↾ (dom 𝑥 ∪ ran 𝑥)) |
| 53 | | cnvss 5294 |
. . . . 5
⊢ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑥 → ◡( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ ◡𝑥) |
| 54 | 52, 53 | syl5eqss 3649 |
. . . 4
⊢ (( I
↾ (dom 𝑥 ∪ ran
𝑥)) ⊆ 𝑥 → ( I ↾ (dom ◡𝑥 ∪ ran ◡𝑥)) ⊆ ◡𝑥) |
| 55 | | dmeq 5324 |
. . . . . . 7
⊢ (𝑦 = ◡𝑥 → dom 𝑦 = dom ◡𝑥) |
| 56 | | rneq 5351 |
. . . . . . 7
⊢ (𝑦 = ◡𝑥 → ran 𝑦 = ran ◡𝑥) |
| 57 | 55, 56 | uneq12d 3768 |
. . . . . 6
⊢ (𝑦 = ◡𝑥 → (dom 𝑦 ∪ ran 𝑦) = (dom ◡𝑥 ∪ ran ◡𝑥)) |
| 58 | 57 | reseq2d 5396 |
. . . . 5
⊢ (𝑦 = ◡𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) = ( I ↾ (dom ◡𝑥 ∪ ran ◡𝑥))) |
| 59 | | id 22 |
. . . . 5
⊢ (𝑦 = ◡𝑥 → 𝑦 = ◡𝑥) |
| 60 | 58, 59 | sseq12d 3634 |
. . . 4
⊢ (𝑦 = ◡𝑥 → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ ( I ↾ (dom ◡𝑥 ∪ ran ◡𝑥)) ⊆ ◡𝑥)) |
| 61 | 54, 60 | syl5ibr 236 |
. . 3
⊢ (𝑦 = ◡𝑥 → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) |
| 62 | 61 | adantl 482 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 = ◡𝑥) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 → ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)) |
| 63 | | dmeq 5324 |
. . . . 5
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → dom 𝑥 = dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
| 64 | | rneq 5351 |
. . . . 5
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ran 𝑥 = ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
| 65 | 63, 64 | uneq12d 3768 |
. . . 4
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) |
| 66 | 65 | reseq2d 5396 |
. . 3
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))))) |
| 67 | | id 22 |
. . 3
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → 𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
| 68 | 66, 67 | sseq12d 3634 |
. 2
⊢ (𝑥 = (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) |
| 69 | | ssun1 3776 |
. . 3
⊢ 𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
| 70 | 69 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
| 71 | | dmexg 7097 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → dom 𝑋 ∈ V) |
| 72 | | rnexg 7098 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ran 𝑋 ∈ V) |
| 73 | | unexg 6959 |
. . . . 5
⊢ ((dom
𝑋 ∈ V ∧ ran 𝑋 ∈ V) → (dom 𝑋 ∪ ran 𝑋) ∈ V) |
| 74 | 71, 72, 73 | syl2anc 693 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (dom 𝑋 ∪ ran 𝑋) ∈ V) |
| 75 | 74 | resiexd 6480 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V) |
| 76 | | unexg 6959 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) ∈ V) → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V) |
| 77 | 75, 76 | mpdan 702 |
. 2
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∈ V) |
| 78 | | dmun 5331 |
. . . . . 6
⊢ dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) = (dom 𝑋 ∪ dom ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
| 79 | | ssun1 3776 |
. . . . . . 7
⊢ dom 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 80 | | dmresi 5457 |
. . . . . . . 8
⊢ dom ( I
↾ (dom 𝑋 ∪ ran
𝑋)) = (dom 𝑋 ∪ ran 𝑋) |
| 81 | 80 | eqimssi 3659 |
. . . . . . 7
⊢ dom ( I
↾ (dom 𝑋 ∪ ran
𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 82 | 79, 81 | unssi 3788 |
. . . . . 6
⊢ (dom
𝑋 ∪ dom ( I ↾
(dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 83 | 78, 82 | eqsstri 3635 |
. . . . 5
⊢ dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 84 | | rnun 5541 |
. . . . . 6
⊢ ran
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) = (ran 𝑋 ∪ ran ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
| 85 | | ssun2 3777 |
. . . . . . 7
⊢ ran 𝑋 ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 86 | | rnresi 5479 |
. . . . . . . 8
⊢ ran ( I
↾ (dom 𝑋 ∪ ran
𝑋)) = (dom 𝑋 ∪ ran 𝑋) |
| 87 | 86 | eqimssi 3659 |
. . . . . . 7
⊢ ran ( I
↾ (dom 𝑋 ∪ ran
𝑋)) ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 88 | 85, 87 | unssi 3788 |
. . . . . 6
⊢ (ran
𝑋 ∪ ran ( I ↾
(dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 89 | 84, 88 | eqsstri 3635 |
. . . . 5
⊢ ran
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) |
| 90 | 83, 89 | pm3.2i 471 |
. . . 4
⊢ (dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) |
| 91 | | unss 3787 |
. . . . 5
⊢ ((dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) ↔ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋)) |
| 92 | | ssres2 5425 |
. . . . 5
⊢ ((dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) ⊆ (dom 𝑋 ∪ ran 𝑋) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
| 93 | 91, 92 | sylbi 207 |
. . . 4
⊢ ((dom
(𝑋 ∪ ( I ↾ (dom
𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋) ∧ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ⊆ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
| 94 | | ssun4 3779 |
. . . 4
⊢ (( I
↾ (dom (𝑋 ∪ ( I
↾ (dom 𝑋 ∪ ran
𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ ( I ↾ (dom 𝑋 ∪ ran 𝑋)) → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
| 95 | 90, 93, 94 | mp2b 10 |
. . 3
⊢ ( I
↾ (dom (𝑋 ∪ ( I
↾ (dom 𝑋 ∪ ran
𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) |
| 96 | 95 | a1i 11 |
. 2
⊢ (𝑋 ∈ 𝑉 → ( I ↾ (dom (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))) ∪ ran (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋))))) ⊆ (𝑋 ∪ ( I ↾ (dom 𝑋 ∪ ran 𝑋)))) |
| 97 | 45, 62, 68, 70, 77, 96 | clcnvlem 37930 |
1
⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) |