Proof of Theorem cnvrcl0
| Step | Hyp | Ref
| Expression |
| 1 | | cnvresid 5968 |
. . . . . . 7


      |
| 2 | | cnvnonrel 37894 |
. . . . . . . . . . . . . . . 16
      |
| 3 | | cnv0 5535 |
. . . . . . . . . . . . . . . 16
  |
| 4 | 2, 3 | eqtr4i 2647 |
. . . . . . . . . . . . . . 15
       |
| 5 | 4 | dmeqi 5325 |
. . . . . . . . . . . . . 14
 
     |
| 6 | | df-rn 5125 |
. . . . . . . . . . . . . 14
     
    |
| 7 | | df-rn 5125 |
. . . . . . . . . . . . . 14
  |
| 8 | 5, 6, 7 | 3eqtr4i 2654 |
. . . . . . . . . . . . 13
     |
| 9 | | 0ss 3972 |
. . . . . . . . . . . . . 14
  |
| 10 | | rnss 5354 |
. . . . . . . . . . . . . 14
 
   |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
  |
| 12 | 8, 11 | eqsstri 3635 |
. . . . . . . . . . . 12
   
  |
| 13 | | ssequn2 3786 |
. . . . . . . . . . . 12
       
        |
| 14 | 12, 13 | mpbi 220 |
. . . . . . . . . . 11
 

      |
| 15 | | rnun 5541 |
. . . . . . . . . . 11
 
             |
| 16 | | dfdm4 5316 |
. . . . . . . . . . 11
  |
| 17 | 14, 15, 16 | 3eqtr4ri 2655 |
. . . . . . . . . 10
        |
| 18 | 4 | rneqi 5352 |
. . . . . . . . . . . . . 14
 
     |
| 19 | | dfdm4 5316 |
. . . . . . . . . . . . . 14
     
    |
| 20 | | dfdm4 5316 |
. . . . . . . . . . . . . 14
  |
| 21 | 18, 19, 20 | 3eqtr4i 2654 |
. . . . . . . . . . . . 13
     |
| 22 | | dmss 5323 |
. . . . . . . . . . . . . 14
 
   |
| 23 | 9, 22 | ax-mp 5 |
. . . . . . . . . . . . 13
  |
| 24 | 21, 23 | eqsstri 3635 |
. . . . . . . . . . . 12
   
  |
| 25 | | ssequn2 3786 |
. . . . . . . . . . . 12
       
        |
| 26 | 24, 25 | mpbi 220 |
. . . . . . . . . . 11
 

      |
| 27 | | dmun 5331 |
. . . . . . . . . . 11
 
             |
| 28 | | df-rn 5125 |
. . . . . . . . . . 11
  |
| 29 | 26, 27, 28 | 3eqtr4ri 2655 |
. . . . . . . . . 10
        |
| 30 | 17, 29 | uneq12i 3765 |
. . . . . . . . 9
                   |
| 31 | 30 | equncomi 3759 |
. . . . . . . 8
                   |
| 32 | 31 | reseq2i 5393 |
. . . . . . 7
                     |
| 33 | 1, 32 | eqtr2i 2645 |
. . . . . 6
         
            |
| 34 | | cnvss 5294 |
. . . . . 6


 
 
     |
| 35 | 33, 34 | syl5eqss 3649 |
. . . . 5


 
  
      
          |
| 36 | | ssun1 3776 |
. . . . 5
         |
| 37 | 35, 36 | syl6ss 3615 |
. . . 4


 
  
      
                |
| 38 | | dmeq 5324 |
. . . . . . 7
         
       |
| 39 | | rneq 5351 |
. . . . . . 7
         
       |
| 40 | 38, 39 | uneq12d 3768 |
. . . . . 6
        
                   |
| 41 | 40 | reseq2d 5396 |
. . . . 5
          
  
      
         |
| 42 | | id 22 |
. . . . 5
       
 
       |
| 43 | 41, 42 | sseq12d 3634 |
. . . 4
           
  
      
                 |
| 44 | 37, 43 | syl5ibr 236 |
. . 3
         
        |
| 45 | 44 | adantl 482 |
. 2
 
 
                |
| 46 | | cnvresid 5968 |
. . . . . 6


      |
| 47 | | dfdm4 5316 |
. . . . . . . . 9
  |
| 48 | | df-rn 5125 |
. . . . . . . . 9
  |
| 49 | 47, 48 | uneq12i 3765 |
. . . . . . . 8
   
   |
| 50 | 49 | equncomi 3759 |
. . . . . . 7
   
   |
| 51 | 50 | reseq2i 5393 |
. . . . . 6
    
    |
| 52 | 46, 51 | eqtr2i 2645 |
. . . . 5
     

   |
| 53 | | cnvss 5294 |
. . . . 5


 
       |
| 54 | 52, 53 | syl5eqss 3649 |
. . . 4


 
        |
| 55 | | dmeq 5324 |
. . . . . . 7
 
   |
| 56 | | rneq 5351 |
. . . . . . 7
 
   |
| 57 | 55, 56 | uneq12d 3768 |
. . . . . 6
  
       |
| 58 | 57 | reseq2d 5396 |
. . . . 5
  
   
     |
| 59 | | id 22 |
. . . . 5
     |
| 60 | 58, 59 | sseq12d 3634 |
. . . 4
   
   
       |
| 61 | 54, 60 | syl5ibr 236 |
. . 3
      
     |
| 62 | 61 | adantl 482 |
. 2
 
 
          |
| 63 | | dmeq 5324 |
. . . . 5
 
    
      |
| 64 | | rneq 5351 |
. . . . 5
 
    
      |
| 65 | 63, 64 | uneq12d 3768 |
. . . 4
 
    
  
    
       |
| 66 | 65 | reseq2d 5396 |
. . 3
 
      
 
    
        |
| 67 | | id 22 |
. . 3
 
   

      |
| 68 | 66, 67 | sseq12d 3634 |
. 2
 
       
 
    
      
       |
| 69 | | ssun1 3776 |
. . 3

     |
| 70 | 69 | a1i 11 |
. 2
        |
| 71 | | dmexg 7097 |
. . . . 5
   |
| 72 | | rnexg 7098 |
. . . . 5
   |
| 73 | | unexg 6959 |
. . . . 5
 
     |
| 74 | 71, 72, 73 | syl2anc 693 |
. . . 4
     |
| 75 | 74 | resiexd 6480 |
. . 3
      |
| 76 | | unexg 6959 |
. . 3
 
    
      |
| 77 | 75, 76 | mpdan 702 |
. 2
 
      |
| 78 | | dmun 5331 |
. . . . . 6

          |
| 79 | | ssun1 3776 |
. . . . . . 7
   |
| 80 | | dmresi 5457 |
. . . . . . . 8
      |
| 81 | 80 | eqimssi 3659 |
. . . . . . 7
      |
| 82 | 79, 81 | unssi 3788 |
. . . . . 6
    
   |
| 83 | 78, 82 | eqsstri 3635 |
. . . . 5

       |
| 84 | | rnun 5541 |
. . . . . 6

          |
| 85 | | ssun2 3777 |
. . . . . . 7
   |
| 86 | | rnresi 5479 |
. . . . . . . 8
      |
| 87 | 86 | eqimssi 3659 |
. . . . . . 7
      |
| 88 | 85, 87 | unssi 3788 |
. . . . . 6
    
   |
| 89 | 84, 88 | eqsstri 3635 |
. . . . 5

       |
| 90 | 83, 89 | pm3.2i 471 |
. . . 4
     
           |
| 91 | | unss 3787 |
. . . . 5
  
      
       

    
         |
| 92 | | ssres2 5425 |
. . . . 5
  
    
             
           |
| 93 | 91, 92 | sylbi 207 |
. . . 4
  
      
             
           |
| 94 | | ssun4 3779 |
. . . 4

 
    
               
      
      |
| 95 | 90, 93, 94 | mp2b 10 |
. . 3
      
     

     |
| 96 | 95 | a1i 11 |
. 2
  
          

      |
| 97 | 45, 62, 68, 70, 77, 96 | clcnvlem 37930 |
1
    
        
       |