| Step | Hyp | Ref
| Expression |
| 1 | | clcnvlem.ubex |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
| 2 | | clcnvlem.ssub |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| 3 | | clcnvlem.clex |
. . . . 5
⊢ (𝜑 → 𝜃) |
| 4 | 2, 3 | jca 554 |
. . . 4
⊢ (𝜑 → (𝑋 ⊆ 𝐴 ∧ 𝜃)) |
| 5 | | clcnvlem.sub3 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | cleq2lem 37914 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ 𝐴 ∧ 𝜃))) |
| 7 | 1, 4, 6 | elabd 3352 |
. . 3
⊢ (𝜑 → ∃𝑥(𝑋 ⊆ 𝑥 ∧ 𝜓)) |
| 8 | 7 | cnvintabd 37909 |
. 2
⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑧 ∈ 𝒫 (V × V)
∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))}) |
| 9 | | df-rab 2921 |
. . . . 5
⊢ {𝑧 ∈ 𝒫 (V × V)
∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} = {𝑧 ∣ (𝑧 ∈ 𝒫 (V × V) ∧
∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))} |
| 10 | | exsimpl 1795 |
. . . . . . . . . . 11
⊢
(∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) → ∃𝑥 𝑧 = ◡𝑥) |
| 11 | | relcnv 5503 |
. . . . . . . . . . . . 13
⊢ Rel ◡𝑥 |
| 12 | | releq 5201 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ◡𝑥 → (Rel 𝑧 ↔ Rel ◡𝑥)) |
| 13 | 11, 12 | mpbiri 248 |
. . . . . . . . . . . 12
⊢ (𝑧 = ◡𝑥 → Rel 𝑧) |
| 14 | 13 | exlimiv 1858 |
. . . . . . . . . . 11
⊢
(∃𝑥 𝑧 = ◡𝑥 → Rel 𝑧) |
| 15 | 10, 14 | syl 17 |
. . . . . . . . . 10
⊢
(∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) → Rel 𝑧) |
| 16 | | df-rel 5121 |
. . . . . . . . . 10
⊢ (Rel
𝑧 ↔ 𝑧 ⊆ (V × V)) |
| 17 | 15, 16 | sylib 208 |
. . . . . . . . 9
⊢
(∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) → 𝑧 ⊆ (V × V)) |
| 18 | | selpw 4165 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝒫 (V × V)
↔ 𝑧 ⊆ (V ×
V)) |
| 19 | 18 | bicomi 214 |
. . . . . . . . 9
⊢ (𝑧 ⊆ (V × V) ↔
𝑧 ∈ 𝒫 (V
× V)) |
| 20 | 17, 19 | sylib 208 |
. . . . . . . 8
⊢
(∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) → 𝑧 ∈ 𝒫 (V ×
V)) |
| 21 | 20 | pm4.71ri 665 |
. . . . . . 7
⊢
(∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) ↔ (𝑧 ∈ 𝒫 (V × V) ∧
∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 22 | 21 | bicomi 214 |
. . . . . 6
⊢ ((𝑧 ∈ 𝒫 (V × V)
∧ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))) ↔ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
| 23 | 22 | abbii 2739 |
. . . . 5
⊢ {𝑧 ∣ (𝑧 ∈ 𝒫 (V × V) ∧
∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))} = {𝑧 ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} |
| 24 | 9, 23 | eqtri 2644 |
. . . 4
⊢ {𝑧 ∈ 𝒫 (V × V)
∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} = {𝑧 ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} |
| 25 | 24 | inteqi 4479 |
. . 3
⊢ ∩ {𝑧
∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} = ∩ {𝑧 ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} |
| 26 | 25 | a1i 11 |
. 2
⊢ (𝜑 → ∩ {𝑧
∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} = ∩ {𝑧 ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))}) |
| 27 | | vex 3203 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 28 | 27 | cnvex 7113 |
. . . . . 6
⊢ ◡𝑦 ∈ V |
| 29 | 28 | cnvex 7113 |
. . . . 5
⊢ ◡◡𝑦 ∈ V |
| 30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → ◡◡𝑦 ∈ V) |
| 31 | 1, 2 | ssexd 4805 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ V) |
| 32 | | difexg 4808 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ V → (𝑋 ∖ ◡◡𝑋) ∈ V) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 ∖ ◡◡𝑋) ∈ V) |
| 34 | | unexg 6959 |
. . . . . . . . . 10
⊢ ((◡𝑦 ∈ V ∧ (𝑋 ∖ ◡◡𝑋) ∈ V) → (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∈ V) |
| 35 | 28, 33, 34 | sylancr 695 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ∈ V) |
| 36 | | inundif 4046 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = 𝑋 |
| 37 | | cnvun 5538 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = (◡(𝑋 ∩ ◡◡𝑋) ∪ ◡(𝑋 ∖ ◡◡𝑋)) |
| 38 | 37 | sseq1i 3629 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 ↔ (◡(𝑋 ∩ ◡◡𝑋) ∪ ◡(𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦) |
| 39 | 38 | biimpi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 → (◡(𝑋 ∩ ◡◡𝑋) ∪ ◡(𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦) |
| 40 | 39 | unssad 3790 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 → ◡(𝑋 ∩ ◡◡𝑋) ⊆ 𝑦) |
| 41 | | relcnv 5503 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ Rel ◡◡𝑋 |
| 42 | | relin2 5237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Rel
◡◡𝑋 → Rel (𝑋 ∩ ◡◡𝑋)) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ Rel
(𝑋 ∩ ◡◡𝑋) |
| 44 | | dfrel2 5583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Rel
(𝑋 ∩ ◡◡𝑋) ↔ ◡◡(𝑋 ∩ ◡◡𝑋) = (𝑋 ∩ ◡◡𝑋)) |
| 45 | 43, 44 | mpbi 220 |
. . . . . . . . . . . . . . . . . . 19
⊢ ◡◡(𝑋 ∩ ◡◡𝑋) = (𝑋 ∩ ◡◡𝑋) |
| 46 | | cnvss 5294 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡(𝑋 ∩ ◡◡𝑋) ⊆ 𝑦 → ◡◡(𝑋 ∩ ◡◡𝑋) ⊆ ◡𝑦) |
| 47 | 45, 46 | syl5eqssr 3650 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡(𝑋 ∩ ◡◡𝑋) ⊆ 𝑦 → (𝑋 ∩ ◡◡𝑋) ⊆ ◡𝑦) |
| 48 | 40, 47 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 → (𝑋 ∩ ◡◡𝑋) ⊆ ◡𝑦) |
| 49 | | ssid 3624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∖ ◡◡𝑋) ⊆ (𝑋 ∖ ◡◡𝑋) |
| 50 | | unss12 3785 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ∩ ◡◡𝑋) ⊆ ◡𝑦 ∧ (𝑋 ∖ ◡◡𝑋) ⊆ (𝑋 ∖ ◡◡𝑋)) → ((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 51 | 48, 49, 50 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢ (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 → ((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = 𝑋 → (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 → ((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 53 | | cnveq 5296 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = 𝑋 → ◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = ◡𝑋) |
| 54 | 53 | sseq1d 3632 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = 𝑋 → (◡((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ 𝑦 ↔ ◡𝑋 ⊆ 𝑦)) |
| 55 | | sseq1 3626 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = 𝑋 → (((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) ↔ 𝑋 ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 56 | 52, 54, 55 | 3imtr3d 282 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∩ ◡◡𝑋) ∪ (𝑋 ∖ ◡◡𝑋)) = 𝑋 → (◡𝑋 ⊆ 𝑦 → 𝑋 ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 57 | 36, 56 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (◡𝑋 ⊆ 𝑦 → 𝑋 ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 58 | | sseq2 3627 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (𝑋 ⊆ 𝑥 ↔ 𝑋 ⊆ (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)))) |
| 59 | 57, 58 | syl5ibr 236 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → (◡𝑋 ⊆ 𝑦 → 𝑋 ⊆ 𝑥)) |
| 60 | 59 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (◡𝑋 ⊆ 𝑦 → 𝑋 ⊆ 𝑥)) |
| 61 | | clcnvlem.sub1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) |
| 62 | 60, 61 | anim12d 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → ((◡𝑋 ⊆ 𝑦 ∧ 𝜒) → (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
| 63 | | cnveq 5296 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ◡𝑥 = ◡(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) |
| 64 | | cnvun 5538 |
. . . . . . . . . . . . 13
⊢ ◡(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) = (◡◡𝑦 ∪ ◡(𝑋 ∖ ◡◡𝑋)) |
| 65 | | cnvnonrel 37894 |
. . . . . . . . . . . . . . 15
⊢ ◡(𝑋 ∖ ◡◡𝑋) = ∅ |
| 66 | | 0ss 3972 |
. . . . . . . . . . . . . . 15
⊢ ∅
⊆ ◡◡𝑦 |
| 67 | 65, 66 | eqsstri 3635 |
. . . . . . . . . . . . . 14
⊢ ◡(𝑋 ∖ ◡◡𝑋) ⊆ ◡◡𝑦 |
| 68 | | ssequn2 3786 |
. . . . . . . . . . . . . 14
⊢ (◡(𝑋 ∖ ◡◡𝑋) ⊆ ◡◡𝑦 ↔ (◡◡𝑦 ∪ ◡(𝑋 ∖ ◡◡𝑋)) = ◡◡𝑦) |
| 69 | 67, 68 | mpbi 220 |
. . . . . . . . . . . . 13
⊢ (◡◡𝑦 ∪ ◡(𝑋 ∖ ◡◡𝑋)) = ◡◡𝑦 |
| 70 | 64, 69 | eqtr2i 2645 |
. . . . . . . . . . . 12
⊢ ◡◡𝑦 = ◡(◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) |
| 71 | 63, 70 | syl6reqr 2675 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋)) → ◡◡𝑦 = ◡𝑥) |
| 72 | 71 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → ◡◡𝑦 = ◡𝑥) |
| 73 | 62, 72 | jctild 566 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → ((◡𝑋 ⊆ 𝑦 ∧ 𝜒) → (◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 74 | 35, 73 | spcimedv 3292 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝑋 ⊆ 𝑦 ∧ 𝜒) → ∃𝑥(◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 75 | 74 | imp 445 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)) → ∃𝑥(◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
| 76 | 75 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 = ◡◡𝑦) ∧ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)) → ∃𝑥(◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
| 77 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑧 = ◡◡𝑦 → (𝑧 = ◡𝑥 ↔ ◡◡𝑦 = ◡𝑥)) |
| 78 | 77 | anbi1d 741 |
. . . . . . . 8
⊢ (𝑧 = ◡◡𝑦 → ((𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) ↔ (◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 79 | 78 | exbidv 1850 |
. . . . . . 7
⊢ (𝑧 = ◡◡𝑦 → (∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) ↔ ∃𝑥(◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 80 | 79 | ad2antlr 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 = ◡◡𝑦) ∧ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)) → (∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) ↔ ∃𝑥(◡◡𝑦 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 81 | 76, 80 | mpbird 247 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 = ◡◡𝑦) ∧ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)) → ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))) |
| 82 | 81 | ex 450 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 = ◡◡𝑦) → ((◡𝑋 ⊆ 𝑦 ∧ 𝜒) → ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)))) |
| 83 | | cnvcnvss 5589 |
. . . . 5
⊢ ◡◡𝑦 ⊆ 𝑦 |
| 84 | 83 | a1i 11 |
. . . 4
⊢ (𝜑 → ◡◡𝑦 ⊆ 𝑦) |
| 85 | 30, 82, 84 | intabssd 37916 |
. . 3
⊢ (𝜑 → ∩ {𝑧
∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} ⊆ ∩
{𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) |
| 86 | | vex 3203 |
. . . . 5
⊢ 𝑧 ∈ V |
| 87 | 86 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑧 ∈ V) |
| 88 | | eqtr 2641 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ 𝑧 = ◡𝑥) → 𝑦 = ◡𝑥) |
| 89 | | cnvss 5294 |
. . . . . . . . . . . 12
⊢ (𝑋 ⊆ 𝑥 → ◡𝑋 ⊆ ◡𝑥) |
| 90 | | sseq2 3627 |
. . . . . . . . . . . 12
⊢ (𝑦 = ◡𝑥 → (◡𝑋 ⊆ 𝑦 ↔ ◡𝑋 ⊆ ◡𝑥)) |
| 91 | 89, 90 | syl5ibr 236 |
. . . . . . . . . . 11
⊢ (𝑦 = ◡𝑥 → (𝑋 ⊆ 𝑥 → ◡𝑋 ⊆ 𝑦)) |
| 92 | 91 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝑋 ⊆ 𝑥 → ◡𝑋 ⊆ 𝑦)) |
| 93 | | clcnvlem.sub2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) |
| 94 | 92, 93 | anim12d 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → ((𝑋 ⊆ 𝑥 ∧ 𝜓) → (◡𝑋 ⊆ 𝑦 ∧ 𝜒))) |
| 95 | 94 | ex 450 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 = ◡𝑥 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) → (◡𝑋 ⊆ 𝑦 ∧ 𝜒)))) |
| 96 | 88, 95 | syl5 34 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 = 𝑧 ∧ 𝑧 = ◡𝑥) → ((𝑋 ⊆ 𝑥 ∧ 𝜓) → (◡𝑋 ⊆ 𝑦 ∧ 𝜒)))) |
| 97 | 96 | impl 650 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 = 𝑧) ∧ 𝑧 = ◡𝑥) → ((𝑋 ⊆ 𝑥 ∧ 𝜓) → (◡𝑋 ⊆ 𝑦 ∧ 𝜒))) |
| 98 | 97 | expimpd 629 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → ((𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) → (◡𝑋 ⊆ 𝑦 ∧ 𝜒))) |
| 99 | 98 | exlimdv 1861 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝑧) → (∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓)) → (◡𝑋 ⊆ 𝑦 ∧ 𝜒))) |
| 100 | | ssid 3624 |
. . . . 5
⊢ 𝑧 ⊆ 𝑧 |
| 101 | 100 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑧 ⊆ 𝑧) |
| 102 | 87, 99, 101 | intabssd 37916 |
. . 3
⊢ (𝜑 → ∩ {𝑦
∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)} ⊆ ∩
{𝑧 ∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))}) |
| 103 | 85, 102 | eqssd 3620 |
. 2
⊢ (𝜑 → ∩ {𝑧
∣ ∃𝑥(𝑧 = ◡𝑥 ∧ (𝑋 ⊆ 𝑥 ∧ 𝜓))} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) |
| 104 | 8, 26, 103 | 3eqtrd 2660 |
1
⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) |