| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvresid | Structured version Visualization version Unicode version | ||
| Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.) |
| Ref | Expression |
|---|---|
| cnvresid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi 5537 |
. . 3
| |
| 2 | 1 | eqcomi 2631 |
. 2
|
| 3 | funi 5920 |
. . 3
| |
| 4 | funeq 5908 |
. . 3
| |
| 5 | 3, 4 | mpbii 223 |
. 2
|
| 6 | funcnvres 5967 |
. . 3
| |
| 7 | imai 5478 |
. . . 4
| |
| 8 | 1, 7 | reseq12i 5394 |
. . 3
|
| 9 | 6, 8 | syl6eq 2672 |
. 2
|
| 10 | 2, 5, 9 | mp2b 10 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 |
| This theorem is referenced by: fcoi1 6078 f1oi 6174 relexpcnv 13775 tsrdir 17238 gicref 17713 ssidcn 21059 idqtop 21509 idhmeo 21576 ltrncnvnid 35413 dihmeetlem1N 36579 dihglblem5apreN 36580 diophrw 37322 cnvrcl0 37932 relexpaddss 38010 |
| Copyright terms: Public domain | W3C validator |