Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrw Structured version   Visualization version   GIF version

Theorem diophrw 37322
Description: Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.)
Assertion
Ref Expression
diophrw ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)})
Distinct variable groups:   𝑆,𝑎,𝑏,𝑐,𝑑   𝑇,𝑎,𝑏,𝑐,𝑑   𝑀,𝑎,𝑏,𝑐,𝑑   𝑂,𝑎,𝑏,𝑐,𝑑   𝑃,𝑏,𝑐,𝑑
Allowed substitution hint:   𝑃(𝑎)

Proof of Theorem diophrw
StepHypRef Expression
1 simpr 477 . . . . . . . . . 10 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) → 𝑏 ∈ (ℕ0𝑚 𝑆))
2 nn0ex 11298 . . . . . . . . . . 11 0 ∈ V
3 simp1 1061 . . . . . . . . . . . 12 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → 𝑆 ∈ V)
43adantr 481 . . . . . . . . . . 11 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) → 𝑆 ∈ V)
5 elmapg 7870 . . . . . . . . . . 11 ((ℕ0 ∈ V ∧ 𝑆 ∈ V) → (𝑏 ∈ (ℕ0𝑚 𝑆) ↔ 𝑏:𝑆⟶ℕ0))
62, 4, 5sylancr 695 . . . . . . . . . 10 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) → (𝑏 ∈ (ℕ0𝑚 𝑆) ↔ 𝑏:𝑆⟶ℕ0))
71, 6mpbid 222 . . . . . . . . 9 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) → 𝑏:𝑆⟶ℕ0)
87adantr 481 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑏:𝑆⟶ℕ0)
9 simp2 1062 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → 𝑀:𝑇1-1𝑆)
10 f1f 6101 . . . . . . . . . 10 (𝑀:𝑇1-1𝑆𝑀:𝑇𝑆)
119, 10syl 17 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → 𝑀:𝑇𝑆)
1211ad2antrr 762 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑀:𝑇𝑆)
13 fco 6058 . . . . . . . 8 ((𝑏:𝑆⟶ℕ0𝑀:𝑇𝑆) → (𝑏𝑀):𝑇⟶ℕ0)
148, 12, 13syl2anc 693 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (𝑏𝑀):𝑇⟶ℕ0)
15 f1dmex 7136 . . . . . . . . . 10 ((𝑀:𝑇1-1𝑆𝑆 ∈ V) → 𝑇 ∈ V)
169, 3, 15syl2anc 693 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → 𝑇 ∈ V)
1716ad2antrr 762 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑇 ∈ V)
18 elmapg 7870 . . . . . . . 8 ((ℕ0 ∈ V ∧ 𝑇 ∈ V) → ((𝑏𝑀) ∈ (ℕ0𝑚 𝑇) ↔ (𝑏𝑀):𝑇⟶ℕ0))
192, 17, 18sylancr 695 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → ((𝑏𝑀) ∈ (ℕ0𝑚 𝑇) ↔ (𝑏𝑀):𝑇⟶ℕ0))
2014, 19mpbird 247 . . . . . 6 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (𝑏𝑀) ∈ (ℕ0𝑚 𝑇))
21 simprl 794 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑎 = (𝑏𝑂))
22 resco 5639 . . . . . . . 8 ((𝑏𝑀) ↾ 𝑂) = (𝑏 ∘ (𝑀𝑂))
23 simpll3 1102 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (𝑀𝑂) = ( I ↾ 𝑂))
2423coeq2d 5284 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (𝑏 ∘ (𝑀𝑂)) = (𝑏 ∘ ( I ↾ 𝑂)))
25 coires1 5653 . . . . . . . . 9 (𝑏 ∘ ( I ↾ 𝑂)) = (𝑏𝑂)
2624, 25syl6eq 2672 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (𝑏 ∘ (𝑀𝑂)) = (𝑏𝑂))
2722, 26syl5eq 2668 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → ((𝑏𝑀) ↾ 𝑂) = (𝑏𝑂))
2821, 27eqtr4d 2659 . . . . . 6 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑎 = ((𝑏𝑀) ↾ 𝑂))
29 simpll1 1100 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑆 ∈ V)
30 oveq2 6658 . . . . . . . . . . . 12 (𝑎 = 𝑆 → (ℕ0𝑚 𝑎) = (ℕ0𝑚 𝑆))
31 oveq2 6658 . . . . . . . . . . . 12 (𝑎 = 𝑆 → (ℤ ↑𝑚 𝑎) = (ℤ ↑𝑚 𝑆))
3230, 31sseq12d 3634 . . . . . . . . . . 11 (𝑎 = 𝑆 → ((ℕ0𝑚 𝑎) ⊆ (ℤ ↑𝑚 𝑎) ↔ (ℕ0𝑚 𝑆) ⊆ (ℤ ↑𝑚 𝑆)))
33 zex 11386 . . . . . . . . . . . 12 ℤ ∈ V
34 nn0ssz 11398 . . . . . . . . . . . 12 0 ⊆ ℤ
35 mapss 7900 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 𝑎) ⊆ (ℤ ↑𝑚 𝑎))
3633, 34, 35mp2an 708 . . . . . . . . . . 11 (ℕ0𝑚 𝑎) ⊆ (ℤ ↑𝑚 𝑎)
3732, 36vtoclg 3266 . . . . . . . . . 10 (𝑆 ∈ V → (ℕ0𝑚 𝑆) ⊆ (ℤ ↑𝑚 𝑆))
3829, 37syl 17 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (ℕ0𝑚 𝑆) ⊆ (ℤ ↑𝑚 𝑆))
39 simplr 792 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑏 ∈ (ℕ0𝑚 𝑆))
4038, 39sseldd 3604 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → 𝑏 ∈ (ℤ ↑𝑚 𝑆))
41 coeq1 5279 . . . . . . . . . 10 (𝑑 = 𝑏 → (𝑑𝑀) = (𝑏𝑀))
4241fveq2d 6195 . . . . . . . . 9 (𝑑 = 𝑏 → (𝑃‘(𝑑𝑀)) = (𝑃‘(𝑏𝑀)))
43 eqid 2622 . . . . . . . . 9 (𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀))) = (𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))
44 fvex 6201 . . . . . . . . 9 (𝑃‘(𝑏𝑀)) ∈ V
4542, 43, 44fvmpt 6282 . . . . . . . 8 (𝑏 ∈ (ℤ ↑𝑚 𝑆) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = (𝑃‘(𝑏𝑀)))
4640, 45syl 17 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = (𝑃‘(𝑏𝑀)))
47 simprr 796 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)
4846, 47eqtr3d 2658 . . . . . 6 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → (𝑃‘(𝑏𝑀)) = 0)
49 reseq1 5390 . . . . . . . . 9 (𝑐 = (𝑏𝑀) → (𝑐𝑂) = ((𝑏𝑀) ↾ 𝑂))
5049eqeq2d 2632 . . . . . . . 8 (𝑐 = (𝑏𝑀) → (𝑎 = (𝑐𝑂) ↔ 𝑎 = ((𝑏𝑀) ↾ 𝑂)))
51 fveq2 6191 . . . . . . . . 9 (𝑐 = (𝑏𝑀) → (𝑃𝑐) = (𝑃‘(𝑏𝑀)))
5251eqeq1d 2624 . . . . . . . 8 (𝑐 = (𝑏𝑀) → ((𝑃𝑐) = 0 ↔ (𝑃‘(𝑏𝑀)) = 0))
5350, 52anbi12d 747 . . . . . . 7 (𝑐 = (𝑏𝑀) → ((𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0) ↔ (𝑎 = ((𝑏𝑀) ↾ 𝑂) ∧ (𝑃‘(𝑏𝑀)) = 0)))
5453rspcev 3309 . . . . . 6 (((𝑏𝑀) ∈ (ℕ0𝑚 𝑇) ∧ (𝑎 = ((𝑏𝑀) ↾ 𝑂) ∧ (𝑃‘(𝑏𝑀)) = 0)) → ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0))
5520, 28, 48, 54syl12anc 1324 . . . . 5 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) ∧ (𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)) → ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0))
5655ex 450 . . . 4 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑏 ∈ (ℕ0𝑚 𝑆)) → ((𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0) → ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)))
5756rexlimdva 3031 . . 3 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → (∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0) → ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)))
58 simpr 477 . . . . . . . . . . . 12 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑐 ∈ (ℕ0𝑚 𝑇))
5916adantr 481 . . . . . . . . . . . . 13 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑇 ∈ V)
60 elmapg 7870 . . . . . . . . . . . . 13 ((ℕ0 ∈ V ∧ 𝑇 ∈ V) → (𝑐 ∈ (ℕ0𝑚 𝑇) ↔ 𝑐:𝑇⟶ℕ0))
612, 59, 60sylancr 695 . . . . . . . . . . . 12 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑐 ∈ (ℕ0𝑚 𝑇) ↔ 𝑐:𝑇⟶ℕ0))
6258, 61mpbid 222 . . . . . . . . . . 11 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑐:𝑇⟶ℕ0)
6362adantr 481 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → 𝑐:𝑇⟶ℕ0)
649ad2antrr 762 . . . . . . . . . . 11 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → 𝑀:𝑇1-1𝑆)
65 f1cnv 6160 . . . . . . . . . . 11 (𝑀:𝑇1-1𝑆𝑀:ran 𝑀1-1-onto𝑇)
66 f1of 6137 . . . . . . . . . . 11 (𝑀:ran 𝑀1-1-onto𝑇𝑀:ran 𝑀𝑇)
6764, 65, 663syl 18 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → 𝑀:ran 𝑀𝑇)
68 fco 6058 . . . . . . . . . 10 ((𝑐:𝑇⟶ℕ0𝑀:ran 𝑀𝑇) → (𝑐𝑀):ran 𝑀⟶ℕ0)
6963, 67, 68syl2anc 693 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑐𝑀):ran 𝑀⟶ℕ0)
70 c0ex 10034 . . . . . . . . . . 11 0 ∈ V
7170fconst 6091 . . . . . . . . . 10 ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0}
7271a1i 11 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0})
73 disjdif 4040 . . . . . . . . . 10 (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅
7473a1i 11 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅)
75 fun 6066 . . . . . . . . 9 ((((𝑐𝑀):ran 𝑀⟶ℕ0 ∧ ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0}) ∧ (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℕ0 ∪ {0}))
7669, 72, 74, 75syl21anc 1325 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℕ0 ∪ {0}))
77 frn 6053 . . . . . . . . . . . 12 (𝑀:𝑇𝑆 → ran 𝑀𝑆)
789, 10, 773syl 18 . . . . . . . . . . 11 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → ran 𝑀𝑆)
7978ad2antrr 762 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ran 𝑀𝑆)
80 undif 4049 . . . . . . . . . 10 (ran 𝑀𝑆 ↔ (ran 𝑀 ∪ (𝑆 ∖ ran 𝑀)) = 𝑆)
8179, 80sylib 208 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (ran 𝑀 ∪ (𝑆 ∖ ran 𝑀)) = 𝑆)
82 0nn0 11307 . . . . . . . . . . . 12 0 ∈ ℕ0
83 snssi 4339 . . . . . . . . . . . 12 (0 ∈ ℕ0 → {0} ⊆ ℕ0)
8482, 83ax-mp 5 . . . . . . . . . . 11 {0} ⊆ ℕ0
85 ssequn2 3786 . . . . . . . . . . 11 ({0} ⊆ ℕ0 ↔ (ℕ0 ∪ {0}) = ℕ0)
8684, 85mpbi 220 . . . . . . . . . 10 (ℕ0 ∪ {0}) = ℕ0
8786a1i 11 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (ℕ0 ∪ {0}) = ℕ0)
8881, 87feq23d 6040 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℕ0 ∪ {0}) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0))
8976, 88mpbid 222 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0)
90 elmapg 7870 . . . . . . . . 9 ((ℕ0 ∈ V ∧ 𝑆 ∈ V) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0𝑚 𝑆) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0))
912, 3, 90sylancr 695 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0𝑚 𝑆) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0))
9291ad2antrr 762 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0𝑚 𝑆) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℕ0))
9389, 92mpbird 247 . . . . . 6 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0𝑚 𝑆))
94 simprl 794 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → 𝑎 = (𝑐𝑂))
95 resundir 5411 . . . . . . . . . 10 (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) = (((𝑐𝑀) ↾ 𝑂) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂))
96 resco 5639 . . . . . . . . . . . 12 ((𝑐𝑀) ↾ 𝑂) = (𝑐 ∘ (𝑀𝑂))
97 cnvresid 5968 . . . . . . . . . . . . . . 15 ( I ↾ 𝑂) = ( I ↾ 𝑂)
98 simpl2 1065 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑀:𝑇1-1𝑆)
99 df-f1 5893 . . . . . . . . . . . . . . . . . 18 (𝑀:𝑇1-1𝑆 ↔ (𝑀:𝑇𝑆 ∧ Fun 𝑀))
10099simprbi 480 . . . . . . . . . . . . . . . . 17 (𝑀:𝑇1-1𝑆 → Fun 𝑀)
101 funcnvres 5967 . . . . . . . . . . . . . . . . 17 (Fun 𝑀(𝑀𝑂) = (𝑀 ↾ (𝑀𝑂)))
10298, 100, 1013syl 18 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑀𝑂) = (𝑀 ↾ (𝑀𝑂)))
103 simpl3 1066 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑀𝑂) = ( I ↾ 𝑂))
104103cnveqd 5298 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑀𝑂) = ( I ↾ 𝑂))
105 df-ima 5127 . . . . . . . . . . . . . . . . . 18 (𝑀𝑂) = ran (𝑀𝑂)
106103rneqd 5353 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → ran (𝑀𝑂) = ran ( I ↾ 𝑂))
107 rnresi 5479 . . . . . . . . . . . . . . . . . . 19 ran ( I ↾ 𝑂) = 𝑂
108106, 107syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → ran (𝑀𝑂) = 𝑂)
109105, 108syl5eq 2668 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑀𝑂) = 𝑂)
110109reseq2d 5396 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑀 ↾ (𝑀𝑂)) = (𝑀𝑂))
111102, 104, 1103eqtr3d 2664 . . . . . . . . . . . . . . 15 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → ( I ↾ 𝑂) = (𝑀𝑂))
11297, 111syl5reqr 2671 . . . . . . . . . . . . . 14 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑀𝑂) = ( I ↾ 𝑂))
113112coeq2d 5284 . . . . . . . . . . . . 13 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑐 ∘ (𝑀𝑂)) = (𝑐 ∘ ( I ↾ 𝑂)))
114 coires1 5653 . . . . . . . . . . . . 13 (𝑐 ∘ ( I ↾ 𝑂)) = (𝑐𝑂)
115113, 114syl6eq 2672 . . . . . . . . . . . 12 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑐 ∘ (𝑀𝑂)) = (𝑐𝑂))
11696, 115syl5eq 2668 . . . . . . . . . . 11 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → ((𝑐𝑀) ↾ 𝑂) = (𝑐𝑂))
117 dmres 5419 . . . . . . . . . . . . 13 dom (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = (𝑂 ∩ dom ((𝑆 ∖ ran 𝑀) × {0}))
11870snnz 4309 . . . . . . . . . . . . . . . 16 {0} ≠ ∅
119 dmxp 5344 . . . . . . . . . . . . . . . 16 ({0} ≠ ∅ → dom ((𝑆 ∖ ran 𝑀) × {0}) = (𝑆 ∖ ran 𝑀))
120118, 119ax-mp 5 . . . . . . . . . . . . . . 15 dom ((𝑆 ∖ ran 𝑀) × {0}) = (𝑆 ∖ ran 𝑀)
121120ineq2i 3811 . . . . . . . . . . . . . 14 (𝑂 ∩ dom ((𝑆 ∖ ran 𝑀) × {0})) = (𝑂 ∩ (𝑆 ∖ ran 𝑀))
122 inss1 3833 . . . . . . . . . . . . . . . 16 (𝑂𝑆) ⊆ 𝑂
123106, 107syl6req 2673 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑂 = ran (𝑀𝑂))
124 resss 5422 . . . . . . . . . . . . . . . . . 18 (𝑀𝑂) ⊆ 𝑀
125 rnss 5354 . . . . . . . . . . . . . . . . . 18 ((𝑀𝑂) ⊆ 𝑀 → ran (𝑀𝑂) ⊆ ran 𝑀)
126124, 125mp1i 13 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → ran (𝑀𝑂) ⊆ ran 𝑀)
127123, 126eqsstrd 3639 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑂 ⊆ ran 𝑀)
128122, 127syl5ss 3614 . . . . . . . . . . . . . . 15 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑂𝑆) ⊆ ran 𝑀)
129 inssdif0 3947 . . . . . . . . . . . . . . 15 ((𝑂𝑆) ⊆ ran 𝑀 ↔ (𝑂 ∩ (𝑆 ∖ ran 𝑀)) = ∅)
130128, 129sylib 208 . . . . . . . . . . . . . 14 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑂 ∩ (𝑆 ∖ ran 𝑀)) = ∅)
131121, 130syl5eq 2668 . . . . . . . . . . . . 13 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑂 ∩ dom ((𝑆 ∖ ran 𝑀) × {0})) = ∅)
132117, 131syl5eq 2668 . . . . . . . . . . . 12 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → dom (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅)
133 relres 5426 . . . . . . . . . . . . 13 Rel (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂)
134 reldm0 5343 . . . . . . . . . . . . 13 (Rel (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) → ((((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅ ↔ dom (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅))
135133, 134ax-mp 5 . . . . . . . . . . . 12 ((((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅ ↔ dom (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅)
136132, 135sylibr 224 . . . . . . . . . . 11 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂) = ∅)
137116, 136uneq12d 3768 . . . . . . . . . 10 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (((𝑐𝑀) ↾ 𝑂) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ↾ 𝑂)) = ((𝑐𝑂) ∪ ∅))
13895, 137syl5eq 2668 . . . . . . . . 9 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) = ((𝑐𝑂) ∪ ∅))
139 un0 3967 . . . . . . . . 9 ((𝑐𝑂) ∪ ∅) = (𝑐𝑂)
140138, 139syl6req 2673 . . . . . . . 8 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → (𝑐𝑂) = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂))
141140adantr 481 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑐𝑂) = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂))
14294, 141eqtrd 2656 . . . . . 6 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → 𝑎 = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂))
143 fss 6056 . . . . . . . . . . . . . 14 ((𝑐:𝑇⟶ℕ0 ∧ ℕ0 ⊆ ℤ) → 𝑐:𝑇⟶ℤ)
14462, 34, 143sylancl 694 . . . . . . . . . . . . 13 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → 𝑐:𝑇⟶ℤ)
145144adantr 481 . . . . . . . . . . . 12 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → 𝑐:𝑇⟶ℤ)
146 fco 6058 . . . . . . . . . . . 12 ((𝑐:𝑇⟶ℤ ∧ 𝑀:ran 𝑀𝑇) → (𝑐𝑀):ran 𝑀⟶ℤ)
147145, 67, 146syl2anc 693 . . . . . . . . . . 11 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑐𝑀):ran 𝑀⟶ℤ)
148 fun 6066 . . . . . . . . . . 11 ((((𝑐𝑀):ran 𝑀⟶ℤ ∧ ((𝑆 ∖ ran 𝑀) × {0}):(𝑆 ∖ ran 𝑀)⟶{0}) ∧ (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀)) = ∅) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℤ ∪ {0}))
149147, 72, 74, 148syl21anc 1325 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℤ ∪ {0}))
150 0z 11388 . . . . . . . . . . . . . 14 0 ∈ ℤ
151 snssi 4339 . . . . . . . . . . . . . 14 (0 ∈ ℤ → {0} ⊆ ℤ)
152150, 151ax-mp 5 . . . . . . . . . . . . 13 {0} ⊆ ℤ
153 ssequn2 3786 . . . . . . . . . . . . 13 ({0} ⊆ ℤ ↔ (ℤ ∪ {0}) = ℤ)
154152, 153mpbi 220 . . . . . . . . . . . 12 (ℤ ∪ {0}) = ℤ
155154a1i 11 . . . . . . . . . . 11 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (ℤ ∪ {0}) = ℤ)
15681, 155feq23d 6040 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):(ran 𝑀 ∪ (𝑆 ∖ ran 𝑀))⟶(ℤ ∪ {0}) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ))
157149, 156mpbid 222 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ)
158 elmapg 7870 . . . . . . . . . . 11 ((ℤ ∈ V ∧ 𝑆 ∈ V) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ ↑𝑚 𝑆) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ))
15933, 3, 158sylancr 695 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ ↑𝑚 𝑆) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ))
160159ad2antrr 762 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ ↑𝑚 𝑆) ↔ ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})):𝑆⟶ℤ))
161157, 160mpbird 247 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ ↑𝑚 𝑆))
162 coeq1 5279 . . . . . . . . . 10 (𝑑 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑑𝑀) = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀))
163162fveq2d 6195 . . . . . . . . 9 (𝑑 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑃‘(𝑑𝑀)) = (𝑃‘(((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)))
164 fvex 6201 . . . . . . . . 9 (𝑃‘(((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)) ∈ V
165163, 43, 164fvmpt 6282 . . . . . . . 8 (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℤ ↑𝑚 𝑆) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = (𝑃‘(((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)))
166161, 165syl 17 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = (𝑃‘(((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)))
167 coundir 5637 . . . . . . . . 9 (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀) = (((𝑐𝑀) ∘ 𝑀) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀))
168 coass 5654 . . . . . . . . . . . 12 ((𝑐𝑀) ∘ 𝑀) = (𝑐 ∘ (𝑀𝑀))
169 f1cocnv1 6166 . . . . . . . . . . . . . 14 (𝑀:𝑇1-1𝑆 → (𝑀𝑀) = ( I ↾ 𝑇))
170169coeq2d 5284 . . . . . . . . . . . . 13 (𝑀:𝑇1-1𝑆 → (𝑐 ∘ (𝑀𝑀)) = (𝑐 ∘ ( I ↾ 𝑇)))
17164, 170syl 17 . . . . . . . . . . . 12 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑐 ∘ (𝑀𝑀)) = (𝑐 ∘ ( I ↾ 𝑇)))
172168, 171syl5eq 2668 . . . . . . . . . . 11 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐𝑀) ∘ 𝑀) = (𝑐 ∘ ( I ↾ 𝑇)))
173120ineq1i 3810 . . . . . . . . . . . . . 14 (dom ((𝑆 ∖ ran 𝑀) × {0}) ∩ ran 𝑀) = ((𝑆 ∖ ran 𝑀) ∩ ran 𝑀)
174 incom 3805 . . . . . . . . . . . . . 14 ((𝑆 ∖ ran 𝑀) ∩ ran 𝑀) = (ran 𝑀 ∩ (𝑆 ∖ ran 𝑀))
175173, 174, 733eqtri 2648 . . . . . . . . . . . . 13 (dom ((𝑆 ∖ ran 𝑀) × {0}) ∩ ran 𝑀) = ∅
176 coeq0 5644 . . . . . . . . . . . . 13 ((((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀) = ∅ ↔ (dom ((𝑆 ∖ ran 𝑀) × {0}) ∩ ran 𝑀) = ∅)
177175, 176mpbir 221 . . . . . . . . . . . 12 (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀) = ∅
178177a1i 11 . . . . . . . . . . 11 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀) = ∅)
179172, 178uneq12d 3768 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∘ 𝑀) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀)) = ((𝑐 ∘ ( I ↾ 𝑇)) ∪ ∅))
180 un0 3967 . . . . . . . . . . 11 ((𝑐 ∘ ( I ↾ 𝑇)) ∪ ∅) = (𝑐 ∘ ( I ↾ 𝑇))
181 fcoi1 6078 . . . . . . . . . . . 12 (𝑐:𝑇⟶ℕ0 → (𝑐 ∘ ( I ↾ 𝑇)) = 𝑐)
18263, 181syl 17 . . . . . . . . . . 11 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑐 ∘ ( I ↾ 𝑇)) = 𝑐)
183180, 182syl5eq 2668 . . . . . . . . . 10 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑐 ∘ ( I ↾ 𝑇)) ∪ ∅) = 𝑐)
184179, 183eqtrd 2656 . . . . . . . . 9 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∘ 𝑀) ∪ (((𝑆 ∖ ran 𝑀) × {0}) ∘ 𝑀)) = 𝑐)
185167, 184syl5eq 2668 . . . . . . . 8 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀) = 𝑐)
186185fveq2d 6195 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑃‘(((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∘ 𝑀)) = (𝑃𝑐))
187 simprr 796 . . . . . . 7 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → (𝑃𝑐) = 0)
188166, 186, 1873eqtrd 2660 . . . . . 6 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0)
189 reseq1 5390 . . . . . . . . 9 (𝑏 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑏𝑂) = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂))
190189eqeq2d 2632 . . . . . . . 8 (𝑏 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (𝑎 = (𝑏𝑂) ↔ 𝑎 = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂)))
191 fveq2 6191 . . . . . . . . 9 (𝑏 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))))
192191eqeq1d 2624 . . . . . . . 8 (𝑏 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → (((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0 ↔ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0))
193190, 192anbi12d 747 . . . . . . 7 (𝑏 = ((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) → ((𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0) ↔ (𝑎 = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0)))
194193rspcev 3309 . . . . . 6 ((((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ∈ (ℕ0𝑚 𝑆) ∧ (𝑎 = (((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0})) ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘((𝑐𝑀) ∪ ((𝑆 ∖ ran 𝑀) × {0}))) = 0)) → ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0))
19593, 142, 188, 194syl12anc 1324 . . . . 5 ((((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) ∧ (𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)) → ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0))
196195ex 450 . . . 4 (((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) ∧ 𝑐 ∈ (ℕ0𝑚 𝑇)) → ((𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0) → ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)))
197196rexlimdva 3031 . . 3 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → (∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0) → ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)))
19857, 197impbid 202 . 2 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → (∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0) ↔ ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)))
199198abbidv 2741 1 ((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  ccom 5118  Rel wrel 5119  Fun wfun 5882  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  0cn0 11292  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378
This theorem is referenced by:  eldioph2  37325  eldioph2b  37326
  Copyright terms: Public domain W3C validator