MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infltoreq Structured version   Visualization version   GIF version

Theorem infltoreq 8408
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infltoreq.1 (𝜑𝑅 Or 𝐴)
infltoreq.2 (𝜑𝐵𝐴)
infltoreq.3 (𝜑𝐵 ∈ Fin)
infltoreq.4 (𝜑𝐶𝐵)
infltoreq.5 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
infltoreq (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))

Proof of Theorem infltoreq
StepHypRef Expression
1 infltoreq.1 . . . 4 (𝜑𝑅 Or 𝐴)
2 cnvso 5674 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
31, 2sylib 208 . . 3 (𝜑𝑅 Or 𝐴)
4 infltoreq.2 . . 3 (𝜑𝐵𝐴)
5 infltoreq.3 . . 3 (𝜑𝐵 ∈ Fin)
6 infltoreq.4 . . 3 (𝜑𝐶𝐵)
7 infltoreq.5 . . . 4 (𝜑𝑆 = inf(𝐵, 𝐴, 𝑅))
8 df-inf 8349 . . . 4 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
97, 8syl6eq 2672 . . 3 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
103, 4, 5, 6, 9supgtoreq 8376 . 2 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
11 ne0i 3921 . . . . . . 7 (𝐶𝐵𝐵 ≠ ∅)
126, 11syl 17 . . . . . 6 (𝜑𝐵 ≠ ∅)
13 fiinfcl 8407 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
141, 5, 12, 4, 13syl13anc 1328 . . . . 5 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵)
157, 14eqeltrd 2701 . . . 4 (𝜑𝑆𝐵)
16 brcnvg 5303 . . . . 5 ((𝐶𝐵𝑆𝐵) → (𝐶𝑅𝑆𝑆𝑅𝐶))
1716bicomd 213 . . . 4 ((𝐶𝐵𝑆𝐵) → (𝑆𝑅𝐶𝐶𝑅𝑆))
186, 15, 17syl2anc 693 . . 3 (𝜑 → (𝑆𝑅𝐶𝐶𝑅𝑆))
1918orbi1d 739 . 2 (𝜑 → ((𝑆𝑅𝐶𝐶 = 𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆)))
2010, 19mpbird 247 1 (𝜑 → (𝑆𝑅𝐶𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wss 3574  c0 3915   class class class wbr 4653   Or wor 5034  ccnv 5113  Fincfn 7955  supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-sup 8348  df-inf 8349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator