MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompss Structured version   Visualization version   GIF version

Theorem conncompss 21236
Description: The connected component containing 𝐴 is a superset of any other connected set containing 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompss ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥)   𝑇(𝑥)

Proof of Theorem conncompss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑋)
2 conntop 21220 . . . . . . 7 ((𝐽t 𝑇) ∈ Conn → (𝐽t 𝑇) ∈ Top)
323ad2ant3 1084 . . . . . 6 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐽t 𝑇) ∈ Top)
4 restrcl 20961 . . . . . . 7 ((𝐽t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V))
54simprd 479 . . . . . 6 ((𝐽t 𝑇) ∈ Top → 𝑇 ∈ V)
6 elpwg 4166 . . . . . 6 (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
73, 5, 63syl 18 . . . . 5 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋𝑇𝑋))
81, 7mpbird 247 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋)
9 3simpc 1060 . . . 4 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn))
10 eleq2 2690 . . . . . 6 (𝑦 = 𝑇 → (𝐴𝑦𝐴𝑇))
11 oveq2 6658 . . . . . . 7 (𝑦 = 𝑇 → (𝐽t 𝑦) = (𝐽t 𝑇))
1211eleq1d 2686 . . . . . 6 (𝑦 = 𝑇 → ((𝐽t 𝑦) ∈ Conn ↔ (𝐽t 𝑇) ∈ Conn))
1310, 12anbi12d 747 . . . . 5 (𝑦 = 𝑇 → ((𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn) ↔ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
14 eleq2 2690 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
15 oveq2 6658 . . . . . . . 8 (𝑥 = 𝑦 → (𝐽t 𝑥) = (𝐽t 𝑦))
1615eleq1d 2686 . . . . . . 7 (𝑥 = 𝑦 → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t 𝑦) ∈ Conn))
1714, 16anbi12d 747 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)))
1817cbvrabv 3199 . . . . 5 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴𝑦 ∧ (𝐽t 𝑦) ∈ Conn)}
1913, 18elrab2 3366 . . . 4 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn)))
208, 9, 19sylanbrc 698 . . 3 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
21 elssuni 4467 . . 3 (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
2220, 21syl 17 . 2 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
23 conncomp.2 . 2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2422, 23syl6sseqr 3652 1 ((𝑇𝑋𝐴𝑇 ∧ (𝐽t 𝑇) ∈ Conn) → 𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436  (class class class)co 6650  t crest 16081  Topctop 20698  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-top 20699  df-conn 21215
This theorem is referenced by:  conncompcld  21237  tgpconncompeqg  21915  tgpconncomp  21916
  Copyright terms: Public domain W3C validator