| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1061 |
. . . . 5
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑋) |
| 2 | | conntop 21220 |
. . . . . . 7
⊢ ((𝐽 ↾t 𝑇) ∈ Conn → (𝐽 ↾t 𝑇) ∈ Top) |
| 3 | 2 | 3ad2ant3 1084 |
. . . . . 6
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐽 ↾t 𝑇) ∈ Top) |
| 4 | | restrcl 20961 |
. . . . . . 7
⊢ ((𝐽 ↾t 𝑇) ∈ Top → (𝐽 ∈ V ∧ 𝑇 ∈ V)) |
| 5 | 4 | simprd 479 |
. . . . . 6
⊢ ((𝐽 ↾t 𝑇) ∈ Top → 𝑇 ∈ V) |
| 6 | | elpwg 4166 |
. . . . . 6
⊢ (𝑇 ∈ V → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) |
| 7 | 3, 5, 6 | 3syl 18 |
. . . . 5
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋)) |
| 8 | 1, 7 | mpbird 247 |
. . . 4
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ 𝒫 𝑋) |
| 9 | | 3simpc 1060 |
. . . 4
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn)) |
| 10 | | eleq2 2690 |
. . . . . 6
⊢ (𝑦 = 𝑇 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑇)) |
| 11 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑦 = 𝑇 → (𝐽 ↾t 𝑦) = (𝐽 ↾t 𝑇)) |
| 12 | 11 | eleq1d 2686 |
. . . . . 6
⊢ (𝑦 = 𝑇 → ((𝐽 ↾t 𝑦) ∈ Conn ↔ (𝐽 ↾t 𝑇) ∈ Conn)) |
| 13 | 10, 12 | anbi12d 747 |
. . . . 5
⊢ (𝑦 = 𝑇 → ((𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn) ↔ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) |
| 14 | | eleq2 2690 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| 15 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐽 ↾t 𝑥) = (𝐽 ↾t 𝑦)) |
| 16 | 15 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t 𝑦) ∈ Conn)) |
| 17 | 14, 16 | anbi12d 747 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn))) |
| 18 | 17 | cbvrabv 3199 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} = {𝑦 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑦 ∧ (𝐽 ↾t 𝑦) ∈ Conn)} |
| 19 | 13, 18 | elrab2 3366 |
. . . 4
⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ (𝑇 ∈ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn))) |
| 20 | 8, 9, 19 | sylanbrc 698 |
. . 3
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 21 | | elssuni 4467 |
. . 3
⊢ (𝑇 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 22 | 20, 21 | syl 17 |
. 2
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 23 | | conncomp.2 |
. 2
⊢ 𝑆 = ∪
{𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| 24 | 22, 23 | syl6sseqr 3652 |
1
⊢ ((𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ (𝐽 ↾t 𝑇) ∈ Conn) → 𝑇 ⊆ 𝑆) |