MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompss Structured version   Visualization version   Unicode version

Theorem conncompss 21236
Description: The connected component containing  A is a superset of any other connected set containing  A. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }
Assertion
Ref Expression
conncompss  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  T  C_  S )
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hints:    S( x)    T( x)

Proof of Theorem conncompss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . 5  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  T  C_  X )
2 conntop 21220 . . . . . . 7  |-  ( ( Jt  T )  e. Conn  ->  ( Jt  T )  e.  Top )
323ad2ant3 1084 . . . . . 6  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  ( Jt  T )  e.  Top )
4 restrcl 20961 . . . . . . 7  |-  ( ( Jt  T )  e.  Top  ->  ( J  e.  _V  /\  T  e.  _V )
)
54simprd 479 . . . . . 6  |-  ( ( Jt  T )  e.  Top  ->  T  e.  _V )
6 elpwg 4166 . . . . . 6  |-  ( T  e.  _V  ->  ( T  e.  ~P X  <->  T 
C_  X ) )
73, 5, 63syl 18 . . . . 5  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  ( T  e.  ~P X 
<->  T  C_  X )
)
81, 7mpbird 247 . . . 4  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  T  e.  ~P X
)
9 3simpc 1060 . . . 4  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  ( A  e.  T  /\  ( Jt  T )  e. Conn )
)
10 eleq2 2690 . . . . . 6  |-  ( y  =  T  ->  ( A  e.  y  <->  A  e.  T ) )
11 oveq2 6658 . . . . . . 7  |-  ( y  =  T  ->  ( Jt  y )  =  ( Jt  T ) )
1211eleq1d 2686 . . . . . 6  |-  ( y  =  T  ->  (
( Jt  y )  e. Conn  <->  ( Jt  T )  e. Conn )
)
1310, 12anbi12d 747 . . . . 5  |-  ( y  =  T  ->  (
( A  e.  y  /\  ( Jt  y )  e. Conn )  <->  ( A  e.  T  /\  ( Jt  T )  e. Conn )
) )
14 eleq2 2690 . . . . . . 7  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
15 oveq2 6658 . . . . . . . 8  |-  ( x  =  y  ->  ( Jt  x )  =  ( Jt  y ) )
1615eleq1d 2686 . . . . . . 7  |-  ( x  =  y  ->  (
( Jt  x )  e. Conn  <->  ( Jt  y
)  e. Conn ) )
1714, 16anbi12d 747 . . . . . 6  |-  ( x  =  y  ->  (
( A  e.  x  /\  ( Jt  x )  e. Conn )  <->  ( A  e.  y  /\  ( Jt  y )  e. Conn
) ) )
1817cbvrabv 3199 . . . . 5  |-  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }  =  { y  e.  ~P X  |  ( A  e.  y  /\  ( Jt  y )  e. Conn
) }
1913, 18elrab2 3366 . . . 4  |-  ( T  e.  { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } 
<->  ( T  e.  ~P X  /\  ( A  e.  T  /\  ( Jt  T )  e. Conn ) ) )
208, 9, 19sylanbrc 698 . . 3  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  T  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )
21 elssuni 4467 . . 3  |-  ( T  e.  { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }  ->  T  C_  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )
2220, 21syl 17 . 2  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  T  C_  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) } )
23 conncomp.2 . 2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e. Conn ) }
2422, 23syl6sseqr 3652 1  |-  ( ( T  C_  X  /\  A  e.  T  /\  ( Jt  T )  e. Conn )  ->  T  C_  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436  (class class class)co 6650   ↾t crest 16081   Topctop 20698  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-top 20699  df-conn 21215
This theorem is referenced by:  conncompcld  21237  tgpconncompeqg  21915  tgpconncomp  21916
  Copyright terms: Public domain W3C validator