Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval Structured version   Visualization version   GIF version

Theorem cvrval 34556
Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 29141 analog.) (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   < (𝑧)

Proof of Theorem cvrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrfval.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrfval.s . . . . . 6 < = (lt‘𝐾)
3 cvrfval.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrfval 34555 . . . . 5 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
5 3anass 1042 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
65opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
74, 6syl6eq 2672 . . . 4 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
87breqd 4664 . . 3 (𝐾𝐴 → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
983ad2ant1 1082 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌))
10 df-br 4654 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))})
11 breq1 4656 . . . . . 6 (𝑥 = 𝑋 → (𝑥 < 𝑦𝑋 < 𝑦))
12 breq1 4656 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 < 𝑧𝑋 < 𝑧))
1312anbi1d 741 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑥 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑦)))
1413rexbidv 3052 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1514notbid 308 . . . . . 6 (𝑥 = 𝑋 → (¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)))
1611, 15anbi12d 747 . . . . 5 (𝑥 = 𝑋 → ((𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦))))
17 breq2 4657 . . . . . 6 (𝑦 = 𝑌 → (𝑋 < 𝑦𝑋 < 𝑌))
18 breq2 4657 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑧 < 𝑦𝑧 < 𝑌))
1918anbi2d 740 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑋 < 𝑧𝑧 < 𝑦) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
2019rexbidv 3052 . . . . . . 7 (𝑦 = 𝑌 → (∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120notbid 308 . . . . . 6 (𝑦 = 𝑌 → (¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2217, 21anbi12d 747 . . . . 5 (𝑦 = 𝑌 → ((𝑋 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑦)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2316, 22opelopab2 4996 . . . 4 ((𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
2410, 23syl5bb 272 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
25243adant1 1079 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
269, 25bitrd 268 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cop 4183   class class class wbr 4653  {copab 4712  cfv 5888  Basecbs 15857  ltcplt 16941  ccvr 34549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-covers 34553
This theorem is referenced by:  cvrlt  34557  cvrnbtwn  34558  cvrval2  34561  cvrcon3b  34564  lautcvr  35378
  Copyright terms: Public domain W3C validator