| Step | Hyp | Ref
| Expression |
| 1 | | dfac4 8945 |
. . 3
⊢
(CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤))) |
| 2 | | neeq1 2856 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅)) |
| 3 | 2 | cbvralv 3171 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ↔ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅) |
| 4 | 3 | anbi2i 730 |
. . . . . . . . . . 11
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) ↔ (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅)) |
| 5 | | r19.26 3064 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) ↔ (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 𝑤 ≠ ∅)) |
| 6 | 4, 5 | bitr4i 267 |
. . . . . . . . . 10
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) ↔ ∀𝑤 ∈ 𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅)) |
| 7 | | pm3.35 611 |
. . . . . . . . . . . 12
⊢ ((𝑤 ≠ ∅ ∧ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → (𝑓‘𝑤) ∈ 𝑤) |
| 8 | 7 | ancoms 469 |
. . . . . . . . . . 11
⊢ (((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) → (𝑓‘𝑤) ∈ 𝑤) |
| 9 | 8 | ralimi 2952 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑥 ((𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑤 ≠ ∅) → ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) |
| 10 | 6, 9 | sylbi 207 |
. . . . . . . . 9
⊢
((∀𝑤 ∈
𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) → ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) |
| 11 | | r19.26 3064 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) ↔ (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
| 12 | | elin 3796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ (𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓)) |
| 13 | | fvelrnb 6243 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 Fn 𝑥 → (𝑣 ∈ ran 𝑓 ↔ ∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣)) |
| 14 | 13 | biimpac 503 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥) → ∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣) |
| 15 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → (𝑓‘𝑤) = (𝑓‘𝑡)) |
| 16 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → 𝑤 = 𝑡) |
| 17 | 15, 16 | eleq12d 2695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑡 → ((𝑓‘𝑤) ∈ 𝑤 ↔ (𝑓‘𝑡) ∈ 𝑡)) |
| 18 | | neeq2 2857 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → (𝑧 ≠ 𝑤 ↔ 𝑧 ≠ 𝑡)) |
| 19 | | ineq2 3808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = 𝑡 → (𝑧 ∩ 𝑤) = (𝑧 ∩ 𝑡)) |
| 20 | 19 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = 𝑡 → ((𝑧 ∩ 𝑤) = ∅ ↔ (𝑧 ∩ 𝑡) = ∅)) |
| 21 | 18, 20 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = 𝑡 → ((𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) ↔ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅))) |
| 22 | 17, 21 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = 𝑡 → (((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) ↔ ((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)))) |
| 23 | 22 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)))) |
| 24 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑡) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧)) |
| 25 | 24 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧) → (𝑓‘𝑡) ∈ 𝑧) |
| 26 | | minel 4033 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ∩ 𝑡) = ∅) → ¬ (𝑓‘𝑡) ∈ 𝑧) |
| 27 | 26 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓‘𝑡) ∈ 𝑡 → ((𝑧 ∩ 𝑡) = ∅ → ¬ (𝑓‘𝑡) ∈ 𝑧)) |
| 28 | 27 | imim2d 57 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓‘𝑡) ∈ 𝑡 → ((𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅) → (𝑧 ≠ 𝑡 → ¬ (𝑓‘𝑡) ∈ 𝑧))) |
| 29 | 28 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → (𝑧 ≠ 𝑡 → ¬ (𝑓‘𝑡) ∈ 𝑧)) |
| 30 | 29 | necon4ad 2813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → ((𝑓‘𝑡) ∈ 𝑧 → 𝑧 = 𝑡)) |
| 31 | 30 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ (𝑓‘𝑡) ∈ 𝑧) → 𝑧 = 𝑡) |
| 32 | 25, 31 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → 𝑧 = 𝑡) |
| 33 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑡 → (𝑓‘𝑧) = (𝑓‘𝑡)) |
| 34 | | eqeq2 2633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑧) = (𝑓‘𝑡) ↔ (𝑓‘𝑧) = 𝑣)) |
| 35 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓‘𝑧) = 𝑣 ↔ 𝑣 = (𝑓‘𝑧)) |
| 36 | 34, 35 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓‘𝑡) = 𝑣 → ((𝑓‘𝑧) = (𝑓‘𝑡) ↔ 𝑣 = (𝑓‘𝑧))) |
| 37 | 33, 36 | syl5ib 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑡) = 𝑣 → (𝑧 = 𝑡 → 𝑣 = (𝑓‘𝑧))) |
| 38 | 37 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → (𝑧 = 𝑡 → 𝑣 = (𝑓‘𝑧))) |
| 39 | 32, 38 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) ∧ ((𝑓‘𝑡) = 𝑣 ∧ 𝑣 ∈ 𝑧)) → 𝑣 = (𝑓‘𝑧)) |
| 40 | 39 | exp32 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓‘𝑡) ∈ 𝑡 ∧ (𝑧 ≠ 𝑡 → (𝑧 ∩ 𝑡) = ∅)) → ((𝑓‘𝑡) = 𝑣 → (𝑣 ∈ 𝑧 → 𝑣 = (𝑓‘𝑧)))) |
| 41 | 23, 40 | syl6com 37 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑤 ∈
𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑡 ∈ 𝑥 → ((𝑓‘𝑡) = 𝑣 → (𝑣 ∈ 𝑧 → 𝑣 = (𝑓‘𝑧))))) |
| 42 | 41 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ 𝑧 → (𝑡 ∈ 𝑥 → ((𝑓‘𝑡) = 𝑣 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧))))) |
| 43 | 42 | rexlimdv 3030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ 𝑧 → (∃𝑡 ∈ 𝑥 (𝑓‘𝑡) = 𝑣 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧)))) |
| 44 | 14, 43 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ 𝑧 → ((𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥) → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧)))) |
| 45 | 44 | expd 452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ 𝑧 → (𝑣 ∈ ran 𝑓 → (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → 𝑣 = (𝑓‘𝑧))))) |
| 46 | 45 | com4t 93 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ 𝑧 → (𝑣 ∈ ran 𝑓 → 𝑣 = (𝑓‘𝑧))))) |
| 47 | 46 | imp4b 613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 48 | 12, 47 | syl5bi 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 ((𝑓‘𝑤) ∈ 𝑤 ∧ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 49 | 11, 48 | sylan2br 493 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 Fn 𝑥 ∧ (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 50 | 49 | anassrs 680 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 51 | 50 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) → 𝑣 = (𝑓‘𝑧))) |
| 52 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → (𝑓‘𝑤) = (𝑓‘𝑧)) |
| 53 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
| 54 | 52, 53 | eleq12d 2695 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → ((𝑓‘𝑤) ∈ 𝑤 ↔ (𝑓‘𝑧) ∈ 𝑧)) |
| 55 | 54 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑓‘𝑧) ∈ 𝑧)) |
| 56 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 Fn 𝑥 ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ ran 𝑓) |
| 57 | 56 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑥 → (𝑓 Fn 𝑥 → (𝑓‘𝑧) ∈ ran 𝑓)) |
| 58 | 55, 57 | anim12d 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ 𝑓 Fn 𝑥) → ((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑓‘𝑧) ∈ ran 𝑓))) |
| 59 | | elin 3796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓) ↔ ((𝑓‘𝑧) ∈ 𝑧 ∧ (𝑓‘𝑧) ∈ ran 𝑓)) |
| 60 | 58, 59 | syl6ibr 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 ∧ 𝑓 Fn 𝑥) → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓))) |
| 61 | 60 | expd 452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑓 Fn 𝑥 → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)))) |
| 62 | 61 | com13 88 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (𝑧 ∈ 𝑥 → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)))) |
| 63 | 62 | imp31 448 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓)) |
| 64 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑓‘𝑧) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ (𝑓‘𝑧) ∈ (𝑧 ∩ ran 𝑓))) |
| 65 | 63, 64 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (𝑣 = (𝑓‘𝑧) → 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 66 | 65 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 = (𝑓‘𝑧) → 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 67 | 51, 66 | impbid 202 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧))) |
| 68 | 67 | ex 450 |
. . . . . . . . . . . . 13
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 69 | 68 | alrimdv 1857 |
. . . . . . . . . . . 12
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 70 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑧) ∈ V |
| 71 | | eqeq2 2633 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓‘𝑧) → (𝑣 = ℎ ↔ 𝑣 = (𝑓‘𝑧))) |
| 72 | 71 | bibi2d 332 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝑓‘𝑧) → ((𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ) ↔ (𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 73 | 72 | albidv 1849 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝑓‘𝑧) → (∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ) ↔ ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)))) |
| 74 | 70, 73 | spcev 3300 |
. . . . . . . . . . . . 13
⊢
(∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)) → ∃ℎ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ)) |
| 75 | | df-eu 2474 |
. . . . . . . . . . . . 13
⊢
(∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ ∃ℎ∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = ℎ)) |
| 76 | 74, 75 | sylibr 224 |
. . . . . . . . . . . 12
⊢
(∀𝑣(𝑣 ∈ (𝑧 ∩ ran 𝑓) ↔ 𝑣 = (𝑓‘𝑧)) → ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)) |
| 77 | 69, 76 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) ∧ 𝑧 ∈ 𝑥) → (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 78 | 77 | ralimdva 2962 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤) → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 79 | 78 | ex 450 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑓‘𝑤) ∈ 𝑤 → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)))) |
| 80 | 10, 79 | syl5 34 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑥 → ((∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) ∧ ∀𝑧 ∈ 𝑥 𝑧 ≠ ∅) → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓)))) |
| 81 | 80 | expd 452 |
. . . . . . 7
⊢ (𝑓 Fn 𝑥 → (∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤) → (∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ → (∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))))) |
| 82 | 81 | imp4b 613 |
. . . . . 6
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 83 | | vex 3203 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 84 | 83 | rnex 7100 |
. . . . . . 7
⊢ ran 𝑓 ∈ V |
| 85 | | ineq2 3808 |
. . . . . . . . . 10
⊢ (𝑦 = ran 𝑓 → (𝑧 ∩ 𝑦) = (𝑧 ∩ ran 𝑓)) |
| 86 | 85 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝑦 = ran 𝑓 → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 87 | 86 | eubidv 2490 |
. . . . . . . 8
⊢ (𝑦 = ran 𝑓 → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 88 | 87 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑦 = ran 𝑓 → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓))) |
| 89 | 84, 88 | spcev 3300 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ ran 𝑓) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
| 90 | 82, 89 | syl6 35 |
. . . . 5
⊢ ((𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 91 | 90 | exlimiv 1858 |
. . . 4
⊢
(∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 92 | 91 | alimi 1739 |
. . 3
⊢
(∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑤 ∈ 𝑥 (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 93 | 1, 92 | sylbi 207 |
. 2
⊢
(CHOICE → ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 94 | | eqid 2622 |
. . . . 5
⊢ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} |
| 95 | | eqid 2622 |
. . . . 5
⊢ (∪ {𝑢
∣ (𝑢 ≠ ∅
∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ∩ 𝑦) = (∪ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ∩ 𝑦) |
| 96 | | biid 251 |
. . . . 5
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 97 | 94, 95, 96 | dfac5lem5 8950 |
. . . 4
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
| 98 | 97 | alrimiv 1855 |
. . 3
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀ℎ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
| 99 | | dfac3 8944 |
. . 3
⊢
(CHOICE ↔ ∀ℎ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) |
| 100 | 98, 99 | sylibr 224 |
. 2
⊢
(∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) →
CHOICE) |
| 101 | 93, 100 | impbii 199 |
1
⊢
(CHOICE ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |