MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem6 Structured version   Visualization version   GIF version

Theorem inf3lem6 8530
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem6 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem6
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 vex 3203 . . . . . . . . . . 11 𝑢 ∈ V
4 vex 3203 . . . . . . . . . . 11 𝑣 ∈ V
51, 2, 3, 4inf3lem5 8529 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → (𝐹𝑣) ⊊ (𝐹𝑢)))
6 dfpss2 3692 . . . . . . . . . . 11 ((𝐹𝑣) ⊊ (𝐹𝑢) ↔ ((𝐹𝑣) ⊆ (𝐹𝑢) ∧ ¬ (𝐹𝑣) = (𝐹𝑢)))
76simprbi 480 . . . . . . . . . 10 ((𝐹𝑣) ⊊ (𝐹𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢))
85, 7syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢)))
98expdimp 453 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑢 ∈ ω) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
109adantrl 752 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
111, 2, 4, 3inf3lem5 8529 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → (𝐹𝑢) ⊊ (𝐹𝑣)))
12 dfpss2 3692 . . . . . . . . . . . 12 ((𝐹𝑢) ⊊ (𝐹𝑣) ↔ ((𝐹𝑢) ⊆ (𝐹𝑣) ∧ ¬ (𝐹𝑢) = (𝐹𝑣)))
1312simprbi 480 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑢) = (𝐹𝑣))
14 eqcom 2629 . . . . . . . . . . 11 ((𝐹𝑢) = (𝐹𝑣) ↔ (𝐹𝑣) = (𝐹𝑢))
1513, 14sylnib 318 . . . . . . . . . 10 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢))
1611, 15syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
1716expdimp 453 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑣 ∈ ω) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1817adantrr 753 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1910, 18jaod 395 . . . . . 6 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝑣𝑢𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
2019con2d 129 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → ¬ (𝑣𝑢𝑢𝑣)))
21 nnord 7073 . . . . . . 7 (𝑣 ∈ ω → Ord 𝑣)
22 nnord 7073 . . . . . . 7 (𝑢 ∈ ω → Ord 𝑢)
23 ordtri3 5759 . . . . . . 7 ((Ord 𝑣 ∧ Ord 𝑢) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2421, 22, 23syl2an 494 . . . . . 6 ((𝑣 ∈ ω ∧ 𝑢 ∈ ω) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2524adantl 482 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2620, 25sylibrd 249 . . . 4 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
2726ralrimivva 2971 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
28 frfnom 7530 . . . . . 6 (rec(𝐺, ∅) ↾ ω) Fn ω
29 fneq1 5979 . . . . . 6 (𝐹 = (rec(𝐺, ∅) ↾ ω) → (𝐹 Fn ω ↔ (rec(𝐺, ∅) ↾ ω) Fn ω))
3028, 29mpbiri 248 . . . . 5 (𝐹 = (rec(𝐺, ∅) ↾ ω) → 𝐹 Fn ω)
31 fvelrnb 6243 . . . . . . . 8 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ω (𝐹𝑣) = 𝑢))
32 inf3lem.4 . . . . . . . . . . . 12 𝐵 ∈ V
331, 2, 4, 32inf3lemd 8524 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝐹𝑣) ⊆ 𝑥)
34 fvex 6201 . . . . . . . . . . . 12 (𝐹𝑣) ∈ V
3534elpw 4164 . . . . . . . . . . 11 ((𝐹𝑣) ∈ 𝒫 𝑥 ↔ (𝐹𝑣) ⊆ 𝑥)
3633, 35sylibr 224 . . . . . . . . . 10 (𝑣 ∈ ω → (𝐹𝑣) ∈ 𝒫 𝑥)
37 eleq1 2689 . . . . . . . . . 10 ((𝐹𝑣) = 𝑢 → ((𝐹𝑣) ∈ 𝒫 𝑥𝑢 ∈ 𝒫 𝑥))
3836, 37syl5ibcom 235 . . . . . . . . 9 (𝑣 ∈ ω → ((𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥))
3938rexlimiv 3027 . . . . . . . 8 (∃𝑣 ∈ ω (𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥)
4031, 39syl6bi 243 . . . . . . 7 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹𝑢 ∈ 𝒫 𝑥))
4140ssrdv 3609 . . . . . 6 (𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥)
4241ancli 574 . . . . 5 (𝐹 Fn ω → (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
432, 30, 42mp2b 10 . . . 4 (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥)
44 df-f 5892 . . . 4 (𝐹:ω⟶𝒫 𝑥 ↔ (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
4543, 44mpbir 221 . . 3 𝐹:ω⟶𝒫 𝑥
4627, 45jctil 560 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
47 dff13 6512 . 2 (𝐹:ω–1-1→𝒫 𝑥 ↔ (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
4846, 47sylibr 224 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  wpss 3575  c0 3915  𝒫 cpw 4158   cuni 4436  cmpt 4729  ran crn 5115  cres 5116  Ord word 5722   Fn wfn 5883  wf 5884  1-1wf1 5885  cfv 5888  ωcom 7065  reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  inf3lem7  8531  dominf  9267  dominfac  9395
  Copyright terms: Public domain W3C validator