| Step | Hyp | Ref
| Expression |
| 1 | | diffi 8192 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin) |
| 2 | | isfi 7979 |
. . . 4
⊢ ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚) |
| 3 | | simp3 1063 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝐴 ∖ {𝑋}) ≈ 𝑚) |
| 4 | | en2sn 8037 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω) → {𝑋} ≈ {𝑚}) |
| 5 | 4 | 3adant3 1081 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → {𝑋} ≈ {𝑚}) |
| 6 | | incom 3805 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋})) |
| 7 | | disjdif 4040 |
. . . . . . . . . . . . 13
⊢ ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅ |
| 8 | 6, 7 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) |
| 10 | | nnord 7073 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ω → Ord 𝑚) |
| 11 | | ordirr 5741 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑚 → ¬ 𝑚 ∈ 𝑚) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ω → ¬
𝑚 ∈ 𝑚) |
| 13 | | disjsn 4246 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∩ {𝑚}) = ∅ ↔ ¬ 𝑚 ∈ 𝑚) |
| 14 | 12, 13 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅) |
| 15 | 14 | 3ad2ant2 1083 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑚 ∩ {𝑚}) = ∅) |
| 16 | | unen 8040 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ {𝑋} ≈ {𝑚}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚})) |
| 17 | 3, 5, 9, 15, 16 | syl22anc 1327 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚})) |
| 18 | | difsnid 4341 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴) |
| 19 | | df-suc 5729 |
. . . . . . . . . . . . . 14
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) |
| 20 | 19 | eqcomi 2631 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∪ {𝑚}) = suc 𝑚 |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐴 → (𝑚 ∪ {𝑚}) = suc 𝑚) |
| 22 | 18, 21 | breq12d 4666 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚)) |
| 23 | 22 | 3ad2ant1 1082 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚)) |
| 24 | 17, 23 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → 𝐴 ≈ suc 𝑚) |
| 25 | | peano2 7086 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ω → suc 𝑚 ∈
ω) |
| 26 | 25 | 3ad2ant2 1083 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc 𝑚 ∈ ω) |
| 27 | | cardennn 8809 |
. . . . . . . . 9
⊢ ((𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω) → (card‘𝐴) = suc 𝑚) |
| 28 | 24, 26, 27 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc 𝑚) |
| 29 | | cardennn 8809 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ 𝑚 ∈ ω) → (card‘(𝐴 ∖ {𝑋})) = 𝑚) |
| 30 | 29 | ancoms 469 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚) |
| 31 | 30 | 3adant1 1079 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚) |
| 32 | | suceq 5790 |
. . . . . . . . 9
⊢
((card‘(𝐴
∖ {𝑋})) = 𝑚 → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚) |
| 33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚) |
| 34 | 28, 33 | eqtr4d 2659 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))) |
| 35 | 34 | 3expib 1268 |
. . . . . 6
⊢ (𝑋 ∈ 𝐴 → ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
| 36 | 35 | com12 32 |
. . . . 5
⊢ ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
| 37 | 36 | rexlimiva 3028 |
. . . 4
⊢
(∃𝑚 ∈
ω (𝐴 ∖ {𝑋}) ≈ 𝑚 → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
| 38 | 2, 37 | sylbi 207 |
. . 3
⊢ ((𝐴 ∖ {𝑋}) ∈ Fin → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
| 39 | 1, 38 | syl 17 |
. 2
⊢ (𝐴 ∈ Fin → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
| 40 | 39 | imp 445 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))) |