MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1card Structured version   Visualization version   GIF version

Theorem dif1card 8833
Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
dif1card ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))

Proof of Theorem dif1card
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 diffi 8192 . . 3 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
2 isfi 7979 . . . 4 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚)
3 simp3 1063 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝐴 ∖ {𝑋}) ≈ 𝑚)
4 en2sn 8037 . . . . . . . . . . . 12 ((𝑋𝐴𝑚 ∈ ω) → {𝑋} ≈ {𝑚})
543adant3 1081 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → {𝑋} ≈ {𝑚})
6 incom 3805 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
7 disjdif 4040 . . . . . . . . . . . . 13 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
86, 7eqtri 2644 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
98a1i 11 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
10 nnord 7073 . . . . . . . . . . . . . 14 (𝑚 ∈ ω → Ord 𝑚)
11 ordirr 5741 . . . . . . . . . . . . . 14 (Ord 𝑚 → ¬ 𝑚𝑚)
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑚 ∈ ω → ¬ 𝑚𝑚)
13 disjsn 4246 . . . . . . . . . . . . 13 ((𝑚 ∩ {𝑚}) = ∅ ↔ ¬ 𝑚𝑚)
1412, 13sylibr 224 . . . . . . . . . . . 12 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
15143ad2ant2 1083 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑚 ∩ {𝑚}) = ∅)
16 unen 8040 . . . . . . . . . . 11 ((((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ {𝑋} ≈ {𝑚}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
173, 5, 9, 15, 16syl22anc 1327 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
18 difsnid 4341 . . . . . . . . . . . 12 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
19 df-suc 5729 . . . . . . . . . . . . . 14 suc 𝑚 = (𝑚 ∪ {𝑚})
2019eqcomi 2631 . . . . . . . . . . . . 13 (𝑚 ∪ {𝑚}) = suc 𝑚
2120a1i 11 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑚 ∪ {𝑚}) = suc 𝑚)
2218, 21breq12d 4666 . . . . . . . . . . 11 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
23223ad2ant1 1082 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
2417, 23mpbid 222 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → 𝐴 ≈ suc 𝑚)
25 peano2 7086 . . . . . . . . . 10 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
26253ad2ant2 1083 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc 𝑚 ∈ ω)
27 cardennn 8809 . . . . . . . . 9 ((𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω) → (card‘𝐴) = suc 𝑚)
2824, 26, 27syl2anc 693 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc 𝑚)
29 cardennn 8809 . . . . . . . . . . 11 (((𝐴 ∖ {𝑋}) ≈ 𝑚𝑚 ∈ ω) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
3029ancoms 469 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
31303adant1 1079 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
32 suceq 5790 . . . . . . . . 9 ((card‘(𝐴 ∖ {𝑋})) = 𝑚 → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3331, 32syl 17 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3428, 33eqtr4d 2659 . . . . . . 7 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
35343expib 1268 . . . . . 6 (𝑋𝐴 → ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3635com12 32 . . . . 5 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3736rexlimiva 3028 . . . 4 (∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚 → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
382, 37sylbi 207 . . 3 ((𝐴 ∖ {𝑋}) ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
391, 38syl 17 . 2 (𝐴 ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
4039imp 445 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653  Ord word 5722  suc csuc 5725  cfv 5888  ωcom 7065  cen 7952  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator