MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdff Structured version   Visualization version   GIF version

Theorem dprdff 18411
Description: A finitely supported function in 𝑆 is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdff.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dprdff.1 (𝜑𝐺dom DProd 𝑆)
dprdff.2 (𝜑 → dom 𝑆 = 𝐼)
dprdff.3 (𝜑𝐹𝑊)
dprdff.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
dprdff (𝜑𝐹:𝐼𝐵)
Distinct variable groups:   ,𝐹   ,𝑖,𝐼   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐹(𝑖)   𝐺(,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dprdff.3 . . . 4 (𝜑𝐹𝑊)
2 dprdff.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 dprdff.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
4 dprdff.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
52, 3, 4dprdw 18409 . . . 4 (𝜑 → (𝐹𝑊 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 )))
61, 5mpbid 222 . . 3 (𝜑 → (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) ∧ 𝐹 finSupp 0 ))
76simp1d 1073 . 2 (𝜑𝐹 Fn 𝐼)
86simp2d 1074 . . 3 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥))
93, 4dprdf2 18406 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
109ffvelrnda 6359 . . . . . 6 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
11 dprdff.b . . . . . . 7 𝐵 = (Base‘𝐺)
1211subgss 17595 . . . . . 6 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (𝑆𝑥) ⊆ 𝐵)
1310, 12syl 17 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ⊆ 𝐵)
1413sseld 3602 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) ∈ (𝑆𝑥) → (𝐹𝑥) ∈ 𝐵))
1514ralimdva 2962 . . 3 (𝜑 → (∀𝑥𝐼 (𝐹𝑥) ∈ (𝑆𝑥) → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
168, 15mpd 15 . 2 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵)
17 ffnfv 6388 . 2 (𝐹:𝐼𝐵 ↔ (𝐹 Fn 𝐼 ∧ ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐵))
187, 16, 17sylanbrc 698 1 (𝜑𝐹:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574   class class class wbr 4653  dom cdm 5114   Fn wfn 5883  wf 5884  cfv 5888  Xcixp 7908   finSupp cfsupp 8275  Basecbs 15857  SubGrpcsubg 17588   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-subg 17591  df-dprd 18394
This theorem is referenced by:  dprdfcntz  18414  dprdssv  18415  dprdfid  18416  dprdfinv  18418  dprdfadd  18419  dprdfsub  18420  dprdfeq0  18421  dprdf11  18422  dprdlub  18425  dmdprdsplitlem  18436  dprddisj2  18438  dpjidcl  18457
  Copyright terms: Public domain W3C validator