MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval Structured version   Visualization version   GIF version

Theorem dprdval 18402
Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dprdval.0 0 = (0g𝐺)
dprdval.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
Assertion
Ref Expression
dprdval ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
Distinct variable groups:   𝑓,,𝑖,𝐼   𝑆,𝑓,,𝑖   𝑓,𝐺,,𝑖
Allowed substitution hints:   𝑊(𝑓,,𝑖)   0 (𝑓,,𝑖)

Proof of Theorem dprdval
Dummy variables 𝑔 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . 2 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝐺dom DProd 𝑆)
2 reldmdprd 18396 . . . . . 6 Rel dom DProd
32brrelex2i 5159 . . . . 5 (𝐺dom DProd 𝑆𝑆 ∈ V)
43adantr 481 . . . 4 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → 𝑆 ∈ V)
52brrelexi 5158 . . . . . 6 (𝐺dom DProd 𝑠𝐺 ∈ V)
6 breq1 4656 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔dom DProd 𝑠𝐺dom DProd 𝑠))
7 oveq1 6657 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑔 DProd 𝑠) = (𝐺 DProd 𝑠))
8 fveq2 6191 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
9 dprdval.0 . . . . . . . . . . . . . 14 0 = (0g𝐺)
108, 9syl6eqr 2674 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (0g𝑔) = 0 )
1110breq2d 4665 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ( finSupp (0g𝑔) ↔ finSupp 0 ))
1211rabbidv 3189 . . . . . . . . . . 11 (𝑔 = 𝐺 → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} = {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 })
13 oveq1 6657 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔 Σg 𝑓) = (𝐺 Σg 𝑓))
1412, 13mpteq12dv 4733 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) = (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
1514rneqd 5353 . . . . . . . . 9 (𝑔 = 𝐺 → ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
167, 15eqeq12d 2637 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ↔ (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
176, 16imbi12d 334 . . . . . . 7 (𝑔 = 𝐺 → ((𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓))) ↔ (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))))
18 df-br 4654 . . . . . . . . 9 (𝑔dom DProd 𝑠 ↔ ⟨𝑔, 𝑠⟩ ∈ dom DProd )
19 fvex 6201 . . . . . . . . . . . . . . . . 17 (𝑠𝑖) ∈ V
2019rgenw 2924 . . . . . . . . . . . . . . . 16 𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V
21 ixpexg 7932 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V → X𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V)
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15 X𝑖 ∈ dom 𝑠(𝑠𝑖) ∈ V
2322mptrabex 6488 . . . . . . . . . . . . . 14 (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
2423rnex 7100 . . . . . . . . . . . . 13 ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
2524rgen2w 2925 . . . . . . . . . . . 12 𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V
26 df-dprd 18394 . . . . . . . . . . . . 13 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
2726fmpt2x 7236 . . . . . . . . . . . 12 (∀𝑔 ∈ Grp ∀𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V ↔ DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})⟶V)
2825, 27mpbi 220 . . . . . . . . . . 11 DProd : 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})⟶V
2928fdmi 6052 . . . . . . . . . 10 dom DProd = 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))})
3029eleq2i 2693 . . . . . . . . 9 (⟨𝑔, 𝑠⟩ ∈ dom DProd ↔ ⟨𝑔, 𝑠⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
31 opeliunxp 5170 . . . . . . . . 9 (⟨𝑔, 𝑠⟩ ∈ 𝑔 ∈ Grp ({𝑔} × { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}) ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
3218, 30, 313bitri 286 . . . . . . . 8 (𝑔dom DProd 𝑠 ↔ (𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}))
3326ovmpt4g 6783 . . . . . . . . 9 ((𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))} ∧ ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)) ∈ V) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3424, 33mp3an3 1413 . . . . . . . 8 ((𝑔 ∈ Grp ∧ 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑖 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑖})(𝑖) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑖) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑖})))) = {(0g𝑔)}))}) → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3532, 34sylbi 207 . . . . . . 7 (𝑔dom DProd 𝑠 → (𝑔 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
3617, 35vtoclg 3266 . . . . . 6 (𝐺 ∈ V → (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
375, 36mpcom 38 . . . . 5 (𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)))
3837sbcth 3450 . . . 4 (𝑆 ∈ V → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
394, 38syl 17 . . 3 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → [𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))))
40 simpr 477 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
4140breq2d 4665 . . . . 5 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺dom DProd 𝑠𝐺dom DProd 𝑆))
4240oveq2d 6666 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 DProd 𝑠) = (𝐺 DProd 𝑆))
4340dmeqd 5326 . . . . . . . . . . . . 13 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = dom 𝑆)
44 simplr 792 . . . . . . . . . . . . 13 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑆 = 𝐼)
4543, 44eqtrd 2656 . . . . . . . . . . . 12 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → dom 𝑠 = 𝐼)
4645ixpeq1d 7920 . . . . . . . . . . 11 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠𝑖) = X𝑖𝐼 (𝑠𝑖))
4740fveq1d 6193 . . . . . . . . . . . 12 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑠𝑖) = (𝑆𝑖))
4847ixpeq2dv 7924 . . . . . . . . . . 11 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖𝐼 (𝑠𝑖) = X𝑖𝐼 (𝑆𝑖))
4946, 48eqtrd 2656 . . . . . . . . . 10 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → X𝑖 ∈ dom 𝑠(𝑠𝑖) = X𝑖𝐼 (𝑆𝑖))
5049rabeqdv 3194 . . . . . . . . 9 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 })
51 dprdval.w . . . . . . . . 9 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5250, 51syl6eqr 2674 . . . . . . . 8 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } = 𝑊)
53 eqidd 2623 . . . . . . . 8 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝐺 Σg 𝑓) = (𝐺 Σg 𝑓))
5452, 53mpteq12dv 4733 . . . . . . 7 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) = (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
5554rneqd 5353 . . . . . 6 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
5642, 55eqeq12d 2637 . . . . 5 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓)) ↔ (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
5741, 56imbi12d 334 . . . 4 (((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) ∧ 𝑠 = 𝑆) → ((𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))))
584, 57sbcied 3472 . . 3 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → ([𝑆 / 𝑠](𝐺dom DProd 𝑠 → (𝐺 DProd 𝑠) = ran (𝑓 ∈ {X𝑖 ∈ dom 𝑠(𝑠𝑖) ∣ finSupp 0 } ↦ (𝐺 Σg 𝑓))) ↔ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))))
5939, 58mpbid 222 . 2 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓))))
601, 59mpd 15 1 ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓𝑊 ↦ (𝐺 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  {crab 2916  Vcvv 3200  [wsbc 3435  cdif 3571  cin 3573  wss 3574  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  Xcixp 7908   finSupp cfsupp 8275  0gc0g 16100   Σg cgsu 16101  mrClscmrc 16243  Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-dprd 18394
This theorem is referenced by:  eldprd  18403  dprdlub  18425
  Copyright terms: Public domain W3C validator