MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrabex Structured version   Visualization version   GIF version

Theorem mptrabex 6488
Description: If the domain of a function given by maps-to notation is a class abstraction based on a set, the function is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypothesis
Ref Expression
mptrabex.1 𝐴 ∈ V
Assertion
Ref Expression
mptrabex (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem mptrabex
StepHypRef Expression
1 mptrabex.1 . . 3 𝐴 ∈ V
21rabex 4813 . 2 {𝑦𝐴𝜑} ∈ V
32mptex 6486 1 (𝑥 ∈ {𝑦𝐴𝜑} ↦ 𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  {crab 2916  Vcvv 3200  cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  odzval  15496  pmtrfval  17870  dmdprd  18397  dprdval  18402  psrlidm  19403  psrass23l  19408  psrass23  19410  mplsubrg  19440  mplmonmul  19464  mplbas2  19470  fusgrfis  26222  wlknwwlksnbij2  26778  wlkwwlkbij2  26785  wlksnwwlknvbij  26803  clwwlksbij  26920  clwwlksvbij  26922  sitgval  30394  fwddifnval  32270  diafval  36320  dicfval  36464
  Copyright terms: Public domain W3C validator