![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrval | Structured version Visualization version GIF version |
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrval.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrval.t | ⊢ · = (.r‘𝑅) |
dvrval.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrval.i | ⊢ 𝐼 = (invr‘𝑅) |
dvrval.d | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6657 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑦))) | |
2 | fveq2 6191 | . . 3 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
3 | 2 | oveq2d 6666 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · (𝐼‘𝑦)) = (𝑋 · (𝐼‘𝑌))) |
4 | dvrval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
5 | dvrval.t | . . 3 ⊢ · = (.r‘𝑅) | |
6 | dvrval.u | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | dvrval.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
8 | dvrval.d | . . 3 ⊢ / = (/r‘𝑅) | |
9 | 4, 5, 6, 7, 8 | dvrfval 18684 | . 2 ⊢ / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦))) |
10 | ovex 6678 | . 2 ⊢ (𝑋 · (𝐼‘𝑌)) ∈ V | |
11 | 1, 3, 9, 10 | ovmpt2 6796 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 .rcmulr 15942 Unitcui 18639 invrcinvr 18671 /rcdvr 18682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-dvr 18683 |
This theorem is referenced by: dvrcl 18686 unitdvcl 18687 dvrid 18688 dvr1 18689 dvrass 18690 dvrcan1 18691 ringinvdv 18694 subrgdv 18797 abvdiv 18837 cnflddiv 19776 nmdvr 22474 sum2dchr 24999 dvrdir 29790 rdivmuldivd 29791 dvrcan5 29793 |
Copyright terms: Public domain | W3C validator |