Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrcan5 Structured version   Visualization version   GIF version

Theorem dvrcan5 29793
Description: Cancellation law for common factor in ratio. (divcan5 10727 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
Hypotheses
Ref Expression
dvrcan5.b 𝐵 = (Base‘𝑅)
dvrcan5.o 𝑈 = (Unit‘𝑅)
dvrcan5.d / = (/r𝑅)
dvrcan5.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))

Proof of Theorem dvrcan5
StepHypRef Expression
1 dvrcan5.b . . . . . . 7 𝐵 = (Base‘𝑅)
2 dvrcan5.o . . . . . . 7 𝑈 = (Unit‘𝑅)
31, 2unitss 18660 . . . . . 6 𝑈𝐵
4 simpr3 1069 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝑈)
53, 4sseldi 3601 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑍𝐵)
6 dvrcan5.t . . . . . . 7 · = (.r𝑅)
72, 6unitmulcl 18664 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈𝑍𝑈) → (𝑌 · 𝑍) ∈ 𝑈)
873adant3r1 1274 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑌 · 𝑍) ∈ 𝑈)
9 eqid 2622 . . . . . 6 (invr𝑅) = (invr𝑅)
10 dvrcan5.d . . . . . 6 / = (/r𝑅)
111, 6, 2, 9, 10dvrval 18685 . . . . 5 ((𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
125, 8, 11syl2anc 693 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))))
13 simpl 473 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑅 ∈ Ring)
14 eqid 2622 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
152, 14unitgrp 18667 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
1613, 15syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
17 simpr2 1068 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑌𝑈)
182, 14unitgrpbas 18666 . . . . . . 7 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
19 fvex 6201 . . . . . . . . 9 (Unit‘𝑅) ∈ V
202, 19eqeltri 2697 . . . . . . . 8 𝑈 ∈ V
21 eqid 2622 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2221, 6mgpplusg 18493 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
2314, 22ressplusg 15993 . . . . . . . 8 (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
2420, 23ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
252, 14, 9invrfval 18673 . . . . . . 7 (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
2618, 24, 25grpinvadd 17493 . . . . . 6 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → ((invr𝑅)‘(𝑌 · 𝑍)) = (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌)))
2726oveq2d 6666 . . . . 5 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑌𝑈𝑍𝑈) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
2816, 17, 4, 27syl3anc 1326 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · ((invr𝑅)‘(𝑌 · 𝑍))) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
29 eqid 2622 . . . . . . . 8 (1r𝑅) = (1r𝑅)
302, 9, 6, 29unitrinv 18678 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → (𝑍 · ((invr𝑅)‘𝑍)) = (1r𝑅))
3130oveq1d 6665 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
32313ad2antr3 1228 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = ((1r𝑅) · ((invr𝑅)‘𝑌)))
332, 9unitinvcl 18674 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
34333ad2antr3 1228 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
353, 34sseldi 3601 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
362, 9unitinvcl 18674 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) ∈ 𝑈)
37363ad2antr2 1227 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝑈)
383, 37sseldi 3601 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((invr𝑅)‘𝑌) ∈ 𝐵)
391, 6ringass 18564 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑍𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵 ∧ ((invr𝑅)‘𝑌) ∈ 𝐵)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
4013, 5, 35, 38, 39syl13anc 1328 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑍 · ((invr𝑅)‘𝑍)) · ((invr𝑅)‘𝑌)) = (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))))
411, 6, 29ringlidm 18571 . . . . . 6 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘𝑌) ∈ 𝐵) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4213, 38, 41syl2anc 693 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((1r𝑅) · ((invr𝑅)‘𝑌)) = ((invr𝑅)‘𝑌))
4332, 40, 423eqtr3d 2664 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 · (((invr𝑅)‘𝑍) · ((invr𝑅)‘𝑌))) = ((invr𝑅)‘𝑌))
4412, 28, 433eqtrd 2660 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑍 / (𝑌 · 𝑍)) = ((invr𝑅)‘𝑌))
4544oveq2d 6666 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 · (𝑍 / (𝑌 · 𝑍))) = (𝑋 · ((invr𝑅)‘𝑌)))
46 simpr1 1067 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → 𝑋𝐵)
471, 2, 10, 6dvrass 18690 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 · 𝑍) ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
4813, 46, 5, 8, 47syl13anc 1328 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 · (𝑍 / (𝑌 · 𝑍))))
491, 6, 2, 9, 10dvrval 18685 . . 3 ((𝑋𝐵𝑌𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
5046, 17, 49syl2anc 693 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → (𝑋 / 𝑌) = (𝑋 · ((invr𝑅)‘𝑌)))
5145, 48, 503eqtr4d 2666 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝑈𝑍𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  +gcplusg 15941  .rcmulr 15942  Grpcgrp 17422  mulGrpcmgp 18489  1rcur 18501  Ringcrg 18547  Unitcui 18639  invrcinvr 18671  /rcdvr 18682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683
This theorem is referenced by:  rhmdvd  29821
  Copyright terms: Public domain W3C validator