![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgdv | Structured version Visualization version GIF version |
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
subrgdv.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
subrgdv.2 | ⊢ / = (/r‘𝑅) |
subrgdv.3 | ⊢ 𝑈 = (Unit‘𝑆) |
subrgdv.4 | ⊢ 𝐸 = (/r‘𝑆) |
Ref | Expression |
---|---|
subrgdv | ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgdv.1 | . . . . . 6 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | eqid 2622 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
3 | subrgdv.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑆) | |
4 | eqid 2622 | . . . . . 6 ⊢ (invr‘𝑆) = (invr‘𝑆) | |
5 | 1, 2, 3, 4 | subrginv 18796 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
6 | 5 | 3adant2 1080 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) = ((invr‘𝑆)‘𝑌)) |
7 | 6 | oveq2d 6666 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌))) |
8 | eqid 2622 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
9 | 1, 8 | ressmulr 16006 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
10 | 9 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (.r‘𝑅) = (.r‘𝑆)) |
11 | 10 | oveqd 6667 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑆)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
12 | 7, 11 | eqtrd 2656 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌)) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
13 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13 | subrgss 18781 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
15 | 14 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 ⊆ (Base‘𝑅)) |
16 | simp2 1062 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐴) | |
17 | 15, 16 | sseldd 3604 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
18 | eqid 2622 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
19 | 1, 18, 3 | subrguss 18795 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅)) |
20 | 19 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑈 ⊆ (Unit‘𝑅)) |
21 | simp3 1063 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
22 | 20, 21 | sseldd 3604 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Unit‘𝑅)) |
23 | subrgdv.2 | . . . 4 ⊢ / = (/r‘𝑅) | |
24 | 13, 8, 18, 2, 23 | dvrval 18685 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
25 | 17, 22, 24 | syl2anc 693 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑌))) |
26 | 1 | subrgbas 18789 | . . . . 5 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
27 | 26 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝐴 = (Base‘𝑆)) |
28 | 16, 27 | eleqtrd 2703 | . . 3 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑆)) |
29 | eqid 2622 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
30 | eqid 2622 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
31 | subrgdv.4 | . . . 4 ⊢ 𝐸 = (/r‘𝑆) | |
32 | 29, 30, 3, 4, 31 | dvrval 18685 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
33 | 28, 21, 32 | syl2anc 693 | . 2 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋𝐸𝑌) = (𝑋(.r‘𝑆)((invr‘𝑆)‘𝑌))) |
34 | 12, 25, 33 | 3eqtr4d 2666 | 1 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 ↾s cress 15858 .rcmulr 15942 Unitcui 18639 invrcinvr 18671 /rcdvr 18682 SubRingcsubrg 18776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-subg 17591 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-subrg 18778 |
This theorem is referenced by: qsssubdrg 19805 redvr 19963 cvsdiv 22932 qrngdiv 25313 |
Copyright terms: Public domain | W3C validator |