MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmnvl Structured version   Visualization version   GIF version

Theorem efgmnvl 18127
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
Assertion
Ref Expression
efgmnvl (𝐴 ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀𝐴)) = 𝐴)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmnvl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 5132 . 2 (𝐴 ∈ (𝐼 × 2𝑜) ↔ ∃𝑎𝐼𝑏 ∈ 2𝑜 𝐴 = ⟨𝑎, 𝑏⟩)
2 efgmval.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
32efgmval 18125 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎𝑀𝑏) = ⟨𝑎, (1𝑜𝑏)⟩)
43fveq2d 6195 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑀‘(𝑎𝑀𝑏)) = (𝑀‘⟨𝑎, (1𝑜𝑏)⟩))
5 df-ov 6653 . . . . . 6 (𝑎𝑀(1𝑜𝑏)) = (𝑀‘⟨𝑎, (1𝑜𝑏)⟩)
64, 5syl6eqr 2674 . . . . 5 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑀‘(𝑎𝑀𝑏)) = (𝑎𝑀(1𝑜𝑏)))
7 2oconcl 7583 . . . . . 6 (𝑏 ∈ 2𝑜 → (1𝑜𝑏) ∈ 2𝑜)
82efgmval 18125 . . . . . 6 ((𝑎𝐼 ∧ (1𝑜𝑏) ∈ 2𝑜) → (𝑎𝑀(1𝑜𝑏)) = ⟨𝑎, (1𝑜 ∖ (1𝑜𝑏))⟩)
97, 8sylan2 491 . . . . 5 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎𝑀(1𝑜𝑏)) = ⟨𝑎, (1𝑜 ∖ (1𝑜𝑏))⟩)
10 1on 7567 . . . . . . . . . . 11 1𝑜 ∈ On
1110onordi 5832 . . . . . . . . . 10 Ord 1𝑜
12 ordtr 5737 . . . . . . . . . 10 (Ord 1𝑜 → Tr 1𝑜)
13 trsucss 5811 . . . . . . . . . 10 (Tr 1𝑜 → (𝑏 ∈ suc 1𝑜𝑏 ⊆ 1𝑜))
1411, 12, 13mp2b 10 . . . . . . . . 9 (𝑏 ∈ suc 1𝑜𝑏 ⊆ 1𝑜)
15 df-2o 7561 . . . . . . . . 9 2𝑜 = suc 1𝑜
1614, 15eleq2s 2719 . . . . . . . 8 (𝑏 ∈ 2𝑜𝑏 ⊆ 1𝑜)
1716adantl 482 . . . . . . 7 ((𝑎𝐼𝑏 ∈ 2𝑜) → 𝑏 ⊆ 1𝑜)
18 dfss4 3858 . . . . . . 7 (𝑏 ⊆ 1𝑜 ↔ (1𝑜 ∖ (1𝑜𝑏)) = 𝑏)
1917, 18sylib 208 . . . . . 6 ((𝑎𝐼𝑏 ∈ 2𝑜) → (1𝑜 ∖ (1𝑜𝑏)) = 𝑏)
2019opeq2d 4409 . . . . 5 ((𝑎𝐼𝑏 ∈ 2𝑜) → ⟨𝑎, (1𝑜 ∖ (1𝑜𝑏))⟩ = ⟨𝑎, 𝑏⟩)
216, 9, 203eqtrd 2660 . . . 4 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩)
22 fveq2 6191 . . . . . . 7 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑀‘⟨𝑎, 𝑏⟩))
23 df-ov 6653 . . . . . . 7 (𝑎𝑀𝑏) = (𝑀‘⟨𝑎, 𝑏⟩)
2422, 23syl6eqr 2674 . . . . . 6 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀𝐴) = (𝑎𝑀𝑏))
2524fveq2d 6195 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = (𝑀‘(𝑎𝑀𝑏)))
26 id 22 . . . . 5 (𝐴 = ⟨𝑎, 𝑏⟩ → 𝐴 = ⟨𝑎, 𝑏⟩)
2725, 26eqeq12d 2637 . . . 4 (𝐴 = ⟨𝑎, 𝑏⟩ → ((𝑀‘(𝑀𝐴)) = 𝐴 ↔ (𝑀‘(𝑎𝑀𝑏)) = ⟨𝑎, 𝑏⟩))
2821, 27syl5ibrcom 237 . . 3 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴))
2928rexlimivv 3036 . 2 (∃𝑎𝐼𝑏 ∈ 2𝑜 𝐴 = ⟨𝑎, 𝑏⟩ → (𝑀‘(𝑀𝐴)) = 𝐴)
301, 29sylbi 207 1 (𝐴 ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  wss 3574  cop 4183  Tr wtr 4752   × cxp 5112  Ord word 5722  suc csuc 5725  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561
This theorem is referenced by:  efginvrel1  18141  efgredlemc  18158
  Copyright terms: Public domain W3C validator