MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgmval Structured version   Visualization version   GIF version

Theorem efgmval 18125
Description: Value of the formal inverse operation for the generating set of a free group. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgmval.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
Assertion
Ref Expression
efgmval ((𝐴𝐼𝐵 ∈ 2𝑜) → (𝐴𝑀𝐵) = ⟨𝐴, (1𝑜𝐵)⟩)
Distinct variable group:   𝑦,𝑧,𝐼
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝑀(𝑦,𝑧)

Proof of Theorem efgmval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4402 . 2 (𝑎 = 𝐴 → ⟨𝑎, (1𝑜𝑏)⟩ = ⟨𝐴, (1𝑜𝑏)⟩)
2 difeq2 3722 . . 3 (𝑏 = 𝐵 → (1𝑜𝑏) = (1𝑜𝐵))
32opeq2d 4409 . 2 (𝑏 = 𝐵 → ⟨𝐴, (1𝑜𝑏)⟩ = ⟨𝐴, (1𝑜𝐵)⟩)
4 efgmval.m . . 3 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
5 opeq1 4402 . . . 4 (𝑦 = 𝑎 → ⟨𝑦, (1𝑜𝑧)⟩ = ⟨𝑎, (1𝑜𝑧)⟩)
6 difeq2 3722 . . . . 5 (𝑧 = 𝑏 → (1𝑜𝑧) = (1𝑜𝑏))
76opeq2d 4409 . . . 4 (𝑧 = 𝑏 → ⟨𝑎, (1𝑜𝑧)⟩ = ⟨𝑎, (1𝑜𝑏)⟩)
85, 7cbvmpt2v 6735 . . 3 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑎𝐼, 𝑏 ∈ 2𝑜 ↦ ⟨𝑎, (1𝑜𝑏)⟩)
94, 8eqtri 2644 . 2 𝑀 = (𝑎𝐼, 𝑏 ∈ 2𝑜 ↦ ⟨𝑎, (1𝑜𝑏)⟩)
10 opex 4932 . 2 𝐴, (1𝑜𝐵)⟩ ∈ V
111, 3, 9, 10ovmpt2 6796 1 ((𝐴𝐼𝐵 ∈ 2𝑜) → (𝐴𝑀𝐵) = ⟨𝐴, (1𝑜𝐵)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cdif 3571  cop 4183  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  efgmnvl  18127  efgval2  18137  vrgpinv  18182  frgpuptinv  18184  frgpuplem  18185  frgpnabllem1  18276
  Copyright terms: Public domain W3C validator