MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel1 Structured version   Visualization version   GIF version

Theorem efginvrel1 18141
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel1
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6256 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3635 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2𝑜)
43sseli 3599 . . . . . . . 8 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2𝑜))
5 revcl 13510 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2𝑜) → (reverse‘𝐴) ∈ Word (𝐼 × 2𝑜))
64, 5syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2𝑜))
7 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
87efgmf 18126 . . . . . . 7 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
9 revco 13580 . . . . . . 7 (((reverse‘𝐴) ∈ Word (𝐼 × 2𝑜) ∧ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
106, 8, 9sylancl 694 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
11 revrev 13516 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2𝑜) → (reverse‘(reverse‘𝐴)) = 𝐴)
124, 11syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴)
1312coeq2d 5284 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀𝐴))
1410, 13eqtr3d 2658 . . . . 5 (𝐴𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀𝐴))
1514coeq2d 5284 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀𝐴)))
16 wrdf 13310 . . . . . . . . 9 (𝐴 ∈ Word (𝐼 × 2𝑜) → 𝐴:(0..^(#‘𝐴))⟶(𝐼 × 2𝑜))
174, 16syl 17 . . . . . . . 8 (𝐴𝑊𝐴:(0..^(#‘𝐴))⟶(𝐼 × 2𝑜))
1817ffvelrnda 6359 . . . . . . 7 ((𝐴𝑊𝑐 ∈ (0..^(#‘𝐴))) → (𝐴𝑐) ∈ (𝐼 × 2𝑜))
197efgmnvl 18127 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2018, 19syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(#‘𝐴))) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2120mpteq2dva 4744 . . . . 5 (𝐴𝑊 → (𝑐 ∈ (0..^(#‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))) = (𝑐 ∈ (0..^(#‘𝐴)) ↦ (𝐴𝑐)))
228ffvelrni 6358 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2𝑜) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2𝑜))
2318, 22syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(#‘𝐴))) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2𝑜))
24 fcompt 6400 . . . . . . 7 ((𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) ∧ 𝐴:(0..^(#‘𝐴))⟶(𝐼 × 2𝑜)) → (𝑀𝐴) = (𝑐 ∈ (0..^(#‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
258, 17, 24sylancr 695 . . . . . 6 (𝐴𝑊 → (𝑀𝐴) = (𝑐 ∈ (0..^(#‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
268a1i 11 . . . . . . 7 (𝐴𝑊𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜))
2726feqmptd 6249 . . . . . 6 (𝐴𝑊𝑀 = (𝑎 ∈ (𝐼 × 2𝑜) ↦ (𝑀𝑎)))
28 fveq2 6191 . . . . . 6 (𝑎 = (𝑀‘(𝐴𝑐)) → (𝑀𝑎) = (𝑀‘(𝑀‘(𝐴𝑐))))
2923, 25, 27, 28fmptco 6396 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = (𝑐 ∈ (0..^(#‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))))
3017feqmptd 6249 . . . . 5 (𝐴𝑊𝐴 = (𝑐 ∈ (0..^(#‘𝐴)) ↦ (𝐴𝑐)))
3121, 29, 303eqtr4d 2666 . . . 4 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = 𝐴)
3215, 31eqtrd 2656 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴)
3332oveq2d 6666 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴))
34 wrdco 13577 . . . . 5 (((reverse‘𝐴) ∈ Word (𝐼 × 2𝑜) ∧ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2𝑜))
356, 8, 34sylancl 694 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2𝑜))
361efgrcl 18128 . . . . 5 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
3736simprd 479 . . . 4 (𝐴𝑊𝑊 = Word (𝐼 × 2𝑜))
3835, 37eleqtrrd 2704 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
39 efgval.r . . . 4 = ( ~FG𝐼)
40 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
411, 39, 7, 40efginvrel2 18140 . . 3 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4238, 41syl 17 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4333, 42eqbrtrrd 4677 1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  c0 3915  cop 4183  cotp 4185   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554  0cc0 9936  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293   splice csplice 13296  reversecreverse 13297  ⟨“cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-efg 18122
This theorem is referenced by:  frgp0  18173
  Copyright terms: Public domain W3C validator