| Step | Hyp | Ref
| Expression |
| 1 | | elxp2 5132 |
. . 3
⊢ (𝐴 ∈ (𝐼 × 2𝑜) ↔
∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 2𝑜 𝐴 = 〈𝑎, 𝑏〉) |
| 2 | | frgpuptinv.m |
. . . . . . . . . 10
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦
〈𝑦,
(1𝑜 ∖ 𝑧)〉) |
| 3 | 2 | efgmval 18125 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜) → (𝑎𝑀𝑏) = 〈𝑎, (1𝑜 ∖ 𝑏)〉) |
| 4 | 3 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜)) → (𝑎𝑀𝑏) = 〈𝑎, (1𝑜 ∖ 𝑏)〉) |
| 5 | 4 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑇‘〈𝑎, (1𝑜 ∖ 𝑏)〉)) |
| 6 | | df-ov 6653 |
. . . . . . 7
⊢ (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑇‘〈𝑎, (1𝑜 ∖ 𝑏)〉) |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑎𝑇(1𝑜 ∖ 𝑏))) |
| 8 | | elpri 4197 |
. . . . . . . . 9
⊢ (𝑏 ∈ {∅,
1𝑜} → (𝑏 = ∅ ∨ 𝑏 = 1𝑜)) |
| 9 | | df2o3 7573 |
. . . . . . . . 9
⊢
2𝑜 = {∅,
1𝑜} |
| 10 | 8, 9 | eleq2s 2719 |
. . . . . . . 8
⊢ (𝑏 ∈ 2𝑜
→ (𝑏 = ∅ ∨
𝑏 =
1𝑜)) |
| 11 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝑎 ∈ 𝐼) |
| 12 | | 1on 7567 |
. . . . . . . . . . . . . . 15
⊢
1𝑜 ∈ On |
| 13 | 12 | elexi 3213 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ V |
| 14 | 13 | prid2 4298 |
. . . . . . . . . . . . 13
⊢
1𝑜 ∈ {∅,
1𝑜} |
| 15 | 14, 9 | eleqtrri 2700 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ 2𝑜 |
| 16 | | 1n0 7575 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 ≠ ∅ |
| 17 | | neeq1 2856 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 1𝑜 →
(𝑧 ≠ ∅ ↔
1𝑜 ≠ ∅)) |
| 18 | 16, 17 | mpbiri 248 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 1𝑜 →
𝑧 ≠
∅) |
| 19 | | ifnefalse 4098 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ≠ ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝑁‘(𝐹‘𝑦))) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 1𝑜 →
if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝑁‘(𝐹‘𝑦))) |
| 21 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (𝐹‘𝑦) = (𝐹‘𝑎)) |
| 22 | 21 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝑁‘(𝐹‘𝑦)) = (𝑁‘(𝐹‘𝑎))) |
| 23 | 20, 22 | sylan9eqr 2678 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 𝑎 ∧ 𝑧 = 1𝑜) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝑁‘(𝐹‘𝑎))) |
| 24 | | frgpup.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦
if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| 25 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢ (𝑁‘(𝐹‘𝑎)) ∈ V |
| 26 | 23, 24, 25 | ovmpt2a 6791 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐼 ∧ 1𝑜 ∈
2𝑜) → (𝑎𝑇1𝑜) = (𝑁‘(𝐹‘𝑎))) |
| 27 | 11, 15, 26 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇1𝑜) = (𝑁‘(𝐹‘𝑎))) |
| 28 | | 0ex 4790 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ V |
| 29 | 28 | prid1 4297 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ {∅, 1𝑜} |
| 30 | 29, 9 | eleqtrri 2700 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 2𝑜 |
| 31 | | iftrue 4092 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) |
| 32 | 31, 21 | sylan9eqr 2678 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝑎 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑎)) |
| 33 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑎) ∈ V |
| 34 | 32, 24, 33 | ovmpt2a 6791 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝐼 ∧ ∅ ∈ 2𝑜)
→ (𝑎𝑇∅) = (𝐹‘𝑎)) |
| 35 | 11, 30, 34 | sylancl 694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇∅) = (𝐹‘𝑎)) |
| 36 | 35 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑁‘(𝑎𝑇∅)) = (𝑁‘(𝐹‘𝑎))) |
| 37 | 27, 36 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇1𝑜) = (𝑁‘(𝑎𝑇∅))) |
| 38 | | difeq2 3722 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ →
(1𝑜 ∖ 𝑏) = (1𝑜 ∖
∅)) |
| 39 | | dif0 3950 |
. . . . . . . . . . . . 13
⊢
(1𝑜 ∖ ∅) =
1𝑜 |
| 40 | 38, 39 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(1𝑜 ∖ 𝑏) = 1𝑜) |
| 41 | 40 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ → (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑎𝑇1𝑜)) |
| 42 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ → (𝑎𝑇𝑏) = (𝑎𝑇∅)) |
| 43 | 42 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ → (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇∅))) |
| 44 | 41, 43 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑏 = ∅ → ((𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇1𝑜) = (𝑁‘(𝑎𝑇∅)))) |
| 45 | 37, 44 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑏 = ∅ → (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) |
| 46 | 37 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑁‘(𝑎𝑇1𝑜)) = (𝑁‘(𝑁‘(𝑎𝑇∅)))) |
| 47 | | frgpup.h |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 ∈ Grp) |
| 48 | 47 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → 𝐻 ∈ Grp) |
| 49 | | frgpup.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| 50 | 49 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝐹‘𝑎) ∈ 𝐵) |
| 51 | 35, 50 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇∅) ∈ 𝐵) |
| 52 | | frgpup.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝐻) |
| 53 | | frgpup.n |
. . . . . . . . . . . . 13
⊢ 𝑁 = (invg‘𝐻) |
| 54 | 52, 53 | grpinvinv 17482 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ Grp ∧ (𝑎𝑇∅) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅)) |
| 55 | 48, 51, 54 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑁‘(𝑁‘(𝑎𝑇∅))) = (𝑎𝑇∅)) |
| 56 | 46, 55 | eqtr2d 2657 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1𝑜))) |
| 57 | | difeq2 3722 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 1𝑜 →
(1𝑜 ∖ 𝑏) = (1𝑜 ∖
1𝑜)) |
| 58 | | difid 3948 |
. . . . . . . . . . . . 13
⊢
(1𝑜 ∖ 1𝑜) =
∅ |
| 59 | 57, 58 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑏 = 1𝑜 →
(1𝑜 ∖ 𝑏) = ∅) |
| 60 | 59 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑏 = 1𝑜 →
(𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑎𝑇∅)) |
| 61 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑏 = 1𝑜 →
(𝑎𝑇𝑏) = (𝑎𝑇1𝑜)) |
| 62 | 61 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑏 = 1𝑜 →
(𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑎𝑇1𝑜))) |
| 63 | 60, 62 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑏 = 1𝑜 →
((𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)) ↔ (𝑎𝑇∅) = (𝑁‘(𝑎𝑇1𝑜)))) |
| 64 | 56, 63 | syl5ibrcom 237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑏 = 1𝑜 → (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) |
| 65 | 45, 64 | jaod 395 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((𝑏 = ∅ ∨ 𝑏 = 1𝑜) → (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) |
| 66 | 10, 65 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (𝑏 ∈ 2𝑜 → (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) |
| 67 | 66 | impr 649 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜)) → (𝑎𝑇(1𝑜 ∖ 𝑏)) = (𝑁‘(𝑎𝑇𝑏))) |
| 68 | 7, 67 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜)) → (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏))) |
| 69 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘𝐴) = (𝑀‘〈𝑎, 𝑏〉)) |
| 70 | | df-ov 6653 |
. . . . . . . 8
⊢ (𝑎𝑀𝑏) = (𝑀‘〈𝑎, 𝑏〉) |
| 71 | 69, 70 | syl6eqr 2674 |
. . . . . . 7
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑀‘𝐴) = (𝑎𝑀𝑏)) |
| 72 | 71 | fveq2d 6195 |
. . . . . 6
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘(𝑀‘𝐴)) = (𝑇‘(𝑎𝑀𝑏))) |
| 73 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘𝐴) = (𝑇‘〈𝑎, 𝑏〉)) |
| 74 | | df-ov 6653 |
. . . . . . . 8
⊢ (𝑎𝑇𝑏) = (𝑇‘〈𝑎, 𝑏〉) |
| 75 | 73, 74 | syl6eqr 2674 |
. . . . . . 7
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘𝐴) = (𝑎𝑇𝑏)) |
| 76 | 75 | fveq2d 6195 |
. . . . . 6
⊢ (𝐴 = 〈𝑎, 𝑏〉 → (𝑁‘(𝑇‘𝐴)) = (𝑁‘(𝑎𝑇𝑏))) |
| 77 | 72, 76 | eqeq12d 2637 |
. . . . 5
⊢ (𝐴 = 〈𝑎, 𝑏〉 → ((𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)) ↔ (𝑇‘(𝑎𝑀𝑏)) = (𝑁‘(𝑎𝑇𝑏)))) |
| 78 | 68, 77 | syl5ibrcom 237 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2𝑜)) → (𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)))) |
| 79 | 78 | rexlimdvva 3038 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 2𝑜 𝐴 = 〈𝑎, 𝑏〉 → (𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)))) |
| 80 | 1, 79 | syl5bi 232 |
. 2
⊢ (𝜑 → (𝐴 ∈ (𝐼 × 2𝑜) →
(𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴)))) |
| 81 | 80 | imp 445 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐼 × 2𝑜)) →
(𝑇‘(𝑀‘𝐴)) = (𝑁‘(𝑇‘𝐴))) |