| Step | Hyp | Ref
| Expression |
| 1 | | hoidmv1le.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
| 2 | | hoidmv1le.z |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 3 | | snidg 4206 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ 𝑉 → 𝑍 ∈ {𝑍}) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 5 | | hoidmv1le.x |
. . . . . . . . . . 11
⊢ 𝑋 = {𝑍} |
| 6 | 4, 5 | syl6eleqr 2712 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝑋) |
| 7 | 1, 6 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
| 8 | | hoidmv1le.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 9 | 8, 6 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
| 10 | 7, 9 | resubcld 10458 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
| 11 | 10 | rexrd 10089 |
. . . . . . 7
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈
ℝ*) |
| 12 | | pnfxr 10092 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 14 | 10 | ltpnfd 11955 |
. . . . . . 7
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) < +∞) |
| 15 | 11, 13, 14 | xrltled 39486 |
. . . . . 6
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤ +∞) |
| 16 | 15 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤ +∞) |
| 17 | | id 22 |
. . . . . . 7
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞ →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) |
| 18 | 17 | eqcomd 2628 |
. . . . . 6
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞ → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 19 | 18 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 20 | 16, 19 | breqtrd 4679 |
. . . 4
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 21 | | simpl 473 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → (𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍))) |
| 22 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) |
| 23 | | nnex 11026 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ℕ ∈
V) |
| 25 | | hoidmv1le.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 26 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 = {𝑍}) |
| 27 | | snfi 8038 |
. . . . . . . . . . . . . . 15
⊢ {𝑍} ∈ Fin |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 29 | 26, 28 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
| 31 | | ne0i 3921 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ 𝑋 → 𝑋 ≠ ∅) |
| 32 | 6, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) |
| 34 | | hoidmv1le.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑋)) |
| 35 | 34 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
| 36 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
| 38 | | hoidmv1le.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑋)) |
| 39 | 38 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
| 40 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
| 42 | 25, 30, 33, 37, 41 | hoidmvn0val 40798 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 43 | 5 | prodeq1i 14648 |
. . . . . . . . . . . 12
⊢
∏𝑘 ∈
𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 45 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ 𝑉) |
| 46 | 6 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ 𝑋) |
| 47 | 37, 46 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)‘𝑍) ∈ ℝ) |
| 48 | 41, 46 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗)‘𝑍) ∈ ℝ) |
| 49 | | volicore 40795 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗)‘𝑍) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑍) ∈ ℝ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℝ) |
| 50 | 47, 48, 49 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℝ) |
| 51 | 50 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℂ) |
| 52 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑍 → ((𝐶‘𝑗)‘𝑘) = ((𝐶‘𝑗)‘𝑍)) |
| 53 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑍 → ((𝐷‘𝑗)‘𝑘) = ((𝐷‘𝑗)‘𝑍)) |
| 54 | 52, 53 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑍 → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 55 | 54 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑍 → (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 56 | 55 | prodsn 14692 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈ 𝑉 ∧ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) ∈ ℂ) → ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 57 | 45, 51, 56 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝑍} (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 58 | 42, 44, 57 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 59 | 58 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
| 60 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑙 → (𝑎‘𝑘) = (𝑎‘𝑙)) |
| 61 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑙 → (𝑏‘𝑘) = (𝑏‘𝑙)) |
| 62 | 60, 61 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑙 → ((𝑎‘𝑘)[,)(𝑏‘𝑘)) = ((𝑎‘𝑙)[,)(𝑏‘𝑙))) |
| 63 | 62 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))) |
| 64 | 63 | cbvprodv 14646 |
. . . . . . . . . . . . . . . . 17
⊢
∏𝑘 ∈
𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))) |
| 65 | | ifeq2 4091 |
. . . . . . . . . . . . . . . . 17
⊢
(∏𝑘 ∈
𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) = ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))) → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))))) |
| 66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))) |
| 67 | 66 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ (ℝ
↑𝑚 𝑥) ∧ 𝑏 ∈ (ℝ ↑𝑚
𝑥)) → if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) = if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))))) |
| 68 | 67 | mpt2eq3ia 6720 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (ℝ
↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) = (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙))))) |
| 69 | 68 | mpteq2i 4741 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ
↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))))) |
| 70 | 25, 69 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑙 ∈ 𝑥 (vol‘((𝑎‘𝑙)[,)(𝑏‘𝑙)))))) |
| 71 | 70, 30, 37, 41 | hoidmvcl 40796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 72 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) |
| 73 | 71, 72 | fmptd 6385 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,)+∞)) |
| 74 | | icossicc 12260 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 75 | 74 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
| 76 | 73, 75 | fssd 6057 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
| 77 | 59, 76 | feq1dd 39347 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))):ℕ⟶(0[,]+∞)) |
| 78 | 77 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))):ℕ⟶(0[,]+∞)) |
| 79 | 24, 78 | sge0repnf 40603 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞)) |
| 80 | 22, 79 | mpbird 247 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) |
| 81 | 9 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝐴‘𝑍) ∈ ℝ) |
| 82 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝐵‘𝑍) ∈ ℝ) |
| 83 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝐴‘𝑍) < (𝐵‘𝑍)) |
| 84 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)) |
| 85 | 47, 84 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)):ℕ⟶ℝ) |
| 86 | 85 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)):ℕ⟶ℝ) |
| 87 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)) |
| 88 | 48, 87 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)):ℕ⟶ℝ) |
| 89 | 88 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)):ℕ⟶ℝ) |
| 90 | | hoidmv1le.s |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 91 | 5 | eleq2i 2693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ 𝑋 ↔ 𝑘 ∈ {𝑍}) |
| 92 | 91 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ 𝑋 → 𝑘 ∈ {𝑍}) |
| 93 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ {𝑍} → 𝑘 = 𝑍) |
| 94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑋 → 𝑘 = 𝑍) |
| 95 | 94, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 96 | 95 | rgen 2922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
∀𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
| 97 | | ixpeq2 7922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 98 | 96, 97 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
| 99 | 98 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 100 | 99 | iuneq2i 4539 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
| 101 | 100 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 102 | 90, 101 | sseqtrd 3641 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 103 | 102 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 104 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) → 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 105 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) → {〈𝑍, 𝑥〉} = {〈𝑍, 𝑥〉}) |
| 106 | | opeq2 4403 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → 〈𝑍, 𝑦〉 = 〈𝑍, 𝑥〉) |
| 107 | 106 | sneqd 4189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → {〈𝑍, 𝑦〉} = {〈𝑍, 𝑥〉}) |
| 108 | 107 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → ({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} ↔ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑥〉})) |
| 109 | 108 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑥〉}) → ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
| 110 | 104, 105,
109 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)) → ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
| 111 | 110 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
| 112 | | elixpsn 7947 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑍 ∈ 𝑉 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ↔ ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
| 113 | 2, 112 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ↔ ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
| 114 | 113 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ↔ ∃𝑦 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
| 115 | 111, 114 | mpbird 247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 116 | 5 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑍} = 𝑋 |
| 117 | | ixpeq1 7919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑍} = 𝑋 → X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 118 | 116, 117 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ X𝑘 ∈
{𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) |
| 119 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑍 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
| 120 | 94, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑋 → (𝐴‘𝑘) = (𝐴‘𝑍)) |
| 121 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑍 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
| 122 | 94, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑋 → (𝐵‘𝑘) = (𝐵‘𝑍)) |
| 123 | 120, 122 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝑋 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 124 | 123 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑋 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 125 | 124 | rgen 2922 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑘 ∈
𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 126 | | ixpeq2 7922 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑘 ∈
𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘)) → X𝑘 ∈ 𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 127 | 125, 126 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ X𝑘 ∈
𝑋 ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 128 | 118, 127 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢ X𝑘 ∈
{𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) |
| 129 | 128 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → X𝑘 ∈
{𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 130 | 129 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → X𝑘 ∈ {𝑍} ((𝐴‘𝑍)[,)(𝐵‘𝑍)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 131 | 115, 130 | eleqtrd 2703 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 132 | 103, 131 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → {〈𝑍, 𝑥〉} ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 133 | | eliun 4524 |
. . . . . . . . . . . . . 14
⊢
({〈𝑍, 𝑥〉} ∈ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑗 ∈ ℕ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 134 | 132, 133 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ∃𝑗 ∈ ℕ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 135 | | ixpeq1 7919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 = {𝑍} → X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 136 | 5, 135 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
| 137 | 136 | eleq2i 2693 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝑍, 𝑥〉} ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 138 | 137 | biimpi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈𝑍, 𝑥〉} ∈ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 139 | 138 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 140 | | elixpsn 7947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑍 ∈ 𝑉 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
| 141 | 2, 140 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
| 142 | 141 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ {𝑍} (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉})) |
| 143 | 139, 142 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → ∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) |
| 144 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
〈𝑍, 𝑥〉 ∈ V |
| 145 | 144 | sneqr 4371 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉) |
| 146 | 145 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉) |
| 147 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑥 ∈ V |
| 148 | 147 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑥 ∈ V) |
| 149 | | opthg 4946 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑥 ∈ V) → (〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉 ↔ (𝑍 = 𝑍 ∧ 𝑥 = 𝑦))) |
| 150 | 2, 148, 149 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉 ↔ (𝑍 = 𝑍 ∧ 𝑥 = 𝑦))) |
| 151 | 150 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → (〈𝑍, 𝑥〉 = 〈𝑍, 𝑦〉 ↔ (𝑍 = 𝑍 ∧ 𝑥 = 𝑦))) |
| 152 | 146, 151 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → (𝑍 = 𝑍 ∧ 𝑥 = 𝑦)) |
| 153 | 152 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑥 = 𝑦) |
| 154 | 153 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑥 = 𝑦) |
| 155 | | simp2 1062 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 156 | 154, 155 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ∧ {〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉}) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 157 | 156 | 3exp 1264 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → ({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
| 158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → ({〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
| 159 | 158 | rexlimdv 3030 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → (∃𝑦 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)){〈𝑍, 𝑥〉} = {〈𝑍, 𝑦〉} → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 160 | 143, 159 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 161 | 160 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 162 | 161 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∧ 𝑗 ∈ ℕ) → ({〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 163 | 162 | reximdva 3017 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → (∃𝑗 ∈ ℕ {〈𝑍, 𝑥〉} ∈ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) → ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 164 | 134, 163 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 165 | | eliun 4524 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∃𝑗 ∈ ℕ 𝑥 ∈ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 166 | 164, 165 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))) → 𝑥 ∈ ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 167 | 166 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))𝑥 ∈ ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 168 | | dfss3 3592 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) ↔ ∀𝑥 ∈ ((𝐴‘𝑍)[,)(𝐵‘𝑍))𝑥 ∈ ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 169 | 167, 168 | sylibr 224 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 170 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))) |
| 171 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
| 172 | 171 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
| 173 | 172 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑗 = 𝑖) → ((𝐶‘𝑗)‘𝑍) = ((𝐶‘𝑖)‘𝑍)) |
| 174 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
| 175 | | fvexd 6203 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐶‘𝑖)‘𝑍) ∈ V) |
| 176 | 170, 173,
174, 175 | fvmptd 6288 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖) = ((𝐶‘𝑖)‘𝑍)) |
| 177 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍)) = (𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))) |
| 178 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
| 179 | 178 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑖 → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 180 | 179 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ 𝑗 = 𝑖) → ((𝐷‘𝑗)‘𝑍) = ((𝐷‘𝑖)‘𝑍)) |
| 181 | | fvexd 6203 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐷‘𝑖)‘𝑍) ∈ V) |
| 182 | 177, 180,
174, 181 | fvmptd 6288 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) = ((𝐷‘𝑖)‘𝑍)) |
| 183 | 176, 182 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 184 | 183 | iuneq2dv 4542 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)) = ∪
𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 185 | 172, 179 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 186 | 185 | cbviunv 4559 |
. . . . . . . . . . . 12
⊢ ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = ∪
𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) |
| 187 | 186 | eqcomi 2631 |
. . . . . . . . . . 11
⊢ ∪ 𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) |
| 188 | 187 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑖 ∈ ℕ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = ∪
𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 189 | 184, 188 | eqtr2d 2657 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = ∪
𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) |
| 190 | 169, 189 | sseqtrd 3641 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) |
| 191 | 190 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → ((𝐴‘𝑍)[,)(𝐵‘𝑍)) ⊆ ∪ 𝑖 ∈ ℕ (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) |
| 192 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶‘𝑖)‘𝑍) ∈ V |
| 193 | 172, 84, 192 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖) = ((𝐶‘𝑖)‘𝑍)) |
| 194 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷‘𝑖)‘𝑍) ∈ V |
| 195 | 179, 87, 194 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) = ((𝐷‘𝑖)‘𝑍)) |
| 196 | 193, 195 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) |
| 197 | 196 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ →
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))) = (vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 198 | 197 | mpteq2ia 4740 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 199 | | eqcom 2629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑖 ↔ 𝑖 = 𝑗) |
| 200 | 199 | imbi1i 339 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) |
| 201 | | eqcom 2629 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) ↔ (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 202 | 201 | imbi2i 326 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 𝑗 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 203 | 200, 202 | bitri 264 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 = 𝑖 → (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)) = (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) ↔ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 204 | 185, 203 | mpbi 220 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)) = (((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))) |
| 205 | 204 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍))) = (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 206 | 205 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝐶‘𝑖)‘𝑍)[,)((𝐷‘𝑖)‘𝑍)))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 207 | 198, 206 | eqtri 2644 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)))) = (𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))) |
| 208 | 207 | fveq2i 6194 |
. . . . . . . . 9
⊢
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) |
| 209 | 208 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) →
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 210 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) |
| 211 | 209, 210 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) →
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖))))) ∈ ℝ) |
| 212 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 − (𝐴‘𝑍)) = (𝑧 − (𝐴‘𝑍))) |
| 213 | 195 | breq1d 4663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧 ↔ ((𝐷‘𝑖)‘𝑍) ≤ 𝑧)) |
| 214 | 213, 195 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ →
if(((𝑗 ∈ ℕ
↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧) = if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)) |
| 215 | 193, 214 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → (((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)) = (((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧))) |
| 216 | 215 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ →
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧))) = (vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)))) |
| 217 | 216 | mpteq2ia 4740 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)))) |
| 218 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = ℎ → (𝐶‘𝑖) = (𝐶‘ℎ)) |
| 219 | 218 | fveq1d 6193 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ → ((𝐶‘𝑖)‘𝑍) = ((𝐶‘ℎ)‘𝑍)) |
| 220 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = ℎ → (𝐷‘𝑖) = (𝐷‘ℎ)) |
| 221 | 220 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = ℎ → ((𝐷‘𝑖)‘𝑍) = ((𝐷‘ℎ)‘𝑍)) |
| 222 | 221 | breq1d 4663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = ℎ → (((𝐷‘𝑖)‘𝑍) ≤ 𝑧 ↔ ((𝐷‘ℎ)‘𝑍) ≤ 𝑧)) |
| 223 | 222, 221 | ifbieq1d 4109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ → if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧) = if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)) |
| 224 | 219, 223 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = ℎ → (((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)) = (((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧))) |
| 225 | 224 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = ℎ → (vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧))) = (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) |
| 226 | 225 | cbvmptv 4750 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝐶‘𝑖)‘𝑍)[,)if(((𝐷‘𝑖)‘𝑍) ≤ 𝑧, ((𝐷‘𝑖)‘𝑍), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) |
| 227 | 217, 226 | eqtri 2644 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ ↦
(vol‘(((𝑗 ∈
ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) |
| 228 | 227 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧))))) |
| 229 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → (((𝐷‘ℎ)‘𝑍) ≤ 𝑤 ↔ ((𝐷‘ℎ)‘𝑍) ≤ 𝑧)) |
| 230 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
| 231 | 229, 230 | ifbieq2d 4111 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤) = if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)) |
| 232 | 231 | eqcomd 2628 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧) = if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)) |
| 233 | 232 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)) = (((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))) |
| 234 | 233 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧))) = (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))) |
| 235 | 234 | mpteq2dv 4745 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑧, ((𝐷‘ℎ)‘𝑍), 𝑧)))) = (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))))) |
| 236 | 228, 235 | eqtr2d 2657 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))) = (𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧))))) |
| 237 | 236 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 →
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))))) =
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))))) |
| 238 | 212, 237 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → ((𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤))))) ↔ (𝑧 − (𝐴‘𝑍)) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧))))))) |
| 239 | 238 | cbvrabv 3199 |
. . . . . . 7
⊢ {𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))))} = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑧 − (𝐴‘𝑍)) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)if(((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖) ≤ 𝑧, ((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖), 𝑧)))))} |
| 240 | | eqid 2622 |
. . . . . . 7
⊢
sup({𝑤 ∈
((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))))}, ℝ, < ) = sup({𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝑤 − (𝐴‘𝑍)) ≤
(Σ^‘(ℎ ∈ ℕ ↦ (vol‘(((𝐶‘ℎ)‘𝑍)[,)if(((𝐷‘ℎ)‘𝑍) ≤ 𝑤, ((𝐷‘ℎ)‘𝑍), 𝑤)))))}, ℝ, < ) |
| 241 | 81, 82, 83, 86, 89, 191, 211, 239, 240 | hoidmv1lelem3 40807 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑖 ∈ ℕ ↦ (vol‘(((𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)‘𝑍))‘𝑖)[,)((𝑗 ∈ ℕ ↦ ((𝐷‘𝑗)‘𝑍))‘𝑖)))))) |
| 242 | 241, 209 | breqtrd 4679 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) ∈ ℝ) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 243 | 21, 80, 242 | syl2anc 693 |
. . . 4
⊢ (((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))) = +∞) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 244 | 20, 243 | pm2.61dan 832 |
. . 3
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 245 | 25, 29, 32, 8, 1 | hoidmvn0val 40798 |
. . . . . . 7
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 246 | 26 | prodeq1d 14651 |
. . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 247 | | volicore 40795 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
| 248 | 9, 7, 247 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℝ) |
| 249 | 248 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℂ) |
| 250 | 119, 121 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑍 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑍)[,)(𝐵‘𝑍))) |
| 251 | 250 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑘 = 𝑍 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 252 | 251 | prodsn 14692 |
. . . . . . . 8
⊢ ((𝑍 ∈ 𝑉 ∧ (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) ∈ ℂ) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 253 | 2, 249, 252 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 254 | 245, 246,
253 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 255 | 254 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 256 | | volico 40200 |
. . . . . . 7
⊢ (((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
| 257 | 9, 7, 256 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
| 258 | 257 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
| 259 | | iftrue 4092 |
. . . . . 6
⊢ ((𝐴‘𝑍) < (𝐵‘𝑍) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 260 | 259 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 261 | 255, 258,
260 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 262 | 59 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 263 | 262 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍)))))) |
| 264 | 261, 263 | breq12d 4666 |
. . 3
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → ((𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ↔ ((𝐵‘𝑍) − (𝐴‘𝑍)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘(((𝐶‘𝑗)‘𝑍)[,)((𝐷‘𝑗)‘𝑍))))))) |
| 265 | 244, 264 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 266 | 245 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 267 | 246 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
| 268 | 253 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍)))) |
| 269 | 257 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (vol‘((𝐴‘𝑍)[,)(𝐵‘𝑍))) = if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0)) |
| 270 | | iffalse 4095 |
. . . . . 6
⊢ (¬
(𝐴‘𝑍) < (𝐵‘𝑍) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = 0) |
| 271 | 270 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → if((𝐴‘𝑍) < (𝐵‘𝑍), ((𝐵‘𝑍) − (𝐴‘𝑍)), 0) = 0) |
| 272 | 268, 269,
271 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → ∏𝑘 ∈ {𝑍} (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
| 273 | 266, 267,
272 | 3eqtrd 2660 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) = 0) |
| 274 | 23 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
| 275 | 274, 76 | sge0ge0 40601 |
. . . 4
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 276 | 275 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 277 | 273, 276 | eqbrtrd 4675 |
. 2
⊢ ((𝜑 ∧ ¬ (𝐴‘𝑍) < (𝐵‘𝑍)) → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 278 | 265, 277 | pm2.61dan 832 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |