| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elixpsn | Structured version Visualization version Unicode version | ||
| Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| elixpsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4187 |
. . . 4
| |
| 2 | 1 | ixpeq1d 7920 |
. . 3
|
| 3 | 2 | eleq2d 2687 |
. 2
|
| 4 | opeq1 4402 |
. . . . 5
| |
| 5 | 4 | sneqd 4189 |
. . . 4
|
| 6 | 5 | eqeq2d 2632 |
. . 3
|
| 7 | 6 | rexbidv 3052 |
. 2
|
| 8 | elex 3212 |
. . 3
| |
| 9 | snex 4908 |
. . . . 5
| |
| 10 | eleq1 2689 |
. . . . 5
| |
| 11 | 9, 10 | mpbiri 248 |
. . . 4
|
| 12 | 11 | rexlimivw 3029 |
. . 3
|
| 13 | eleq1 2689 |
. . . 4
| |
| 14 | eqeq1 2626 |
. . . . 5
| |
| 15 | 14 | rexbidv 3052 |
. . . 4
|
| 16 | vex 3203 |
. . . . . 6
| |
| 17 | 16 | elixp 7915 |
. . . . 5
|
| 18 | vex 3203 |
. . . . . . 7
| |
| 19 | fveq2 6191 |
. . . . . . . 8
| |
| 20 | 19 | eleq1d 2686 |
. . . . . . 7
|
| 21 | 18, 20 | ralsn 4222 |
. . . . . 6
|
| 22 | 21 | anbi2i 730 |
. . . . 5
|
| 23 | simpl 473 |
. . . . . . . . 9
| |
| 24 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | eleq1d 2686 |
. . . . . . . . . . . 12
|
| 26 | 18, 25 | ralsn 4222 |
. . . . . . . . . . 11
|
| 27 | 26 | biimpri 218 |
. . . . . . . . . 10
|
| 28 | 27 | adantl 482 |
. . . . . . . . 9
|
| 29 | ffnfv 6388 |
. . . . . . . . 9
| |
| 30 | 23, 28, 29 | sylanbrc 698 |
. . . . . . . 8
|
| 31 | 18 | fsn2 6403 |
. . . . . . . 8
|
| 32 | 30, 31 | sylib 208 |
. . . . . . 7
|
| 33 | opeq2 4403 |
. . . . . . . . . 10
| |
| 34 | 33 | sneqd 4189 |
. . . . . . . . 9
|
| 35 | 34 | eqeq2d 2632 |
. . . . . . . 8
|
| 36 | 35 | rspcev 3309 |
. . . . . . 7
|
| 37 | 32, 36 | syl 17 |
. . . . . 6
|
| 38 | vex 3203 |
. . . . . . . . . . 11
| |
| 39 | 18, 38 | fvsn 6446 |
. . . . . . . . . 10
|
| 40 | id 22 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | syl5eqel 2705 |
. . . . . . . . 9
|
| 42 | 18, 38 | fnsn 5946 |
. . . . . . . . 9
|
| 43 | 41, 42 | jctil 560 |
. . . . . . . 8
|
| 44 | fneq1 5979 |
. . . . . . . . 9
| |
| 45 | fveq1 6190 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq1d 2686 |
. . . . . . . . 9
|
| 47 | 44, 46 | anbi12d 747 |
. . . . . . . 8
|
| 48 | 43, 47 | syl5ibrcom 237 |
. . . . . . 7
|
| 49 | 48 | rexlimiv 3027 |
. . . . . 6
|
| 50 | 37, 49 | impbii 199 |
. . . . 5
|
| 51 | 17, 22, 50 | 3bitri 286 |
. . . 4
|
| 52 | 13, 15, 51 | vtoclbg 3267 |
. . 3
|
| 53 | 8, 12, 52 | pm5.21nii 368 |
. 2
|
| 54 | 3, 7, 53 | vtoclbg 3267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ixp 7909 |
| This theorem is referenced by: ixpsnf1o 7948 hoidmv1le 40808 |
| Copyright terms: Public domain | W3C validator |