Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Structured version   Visualization version   GIF version

Theorem elrfirn2 37259
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵,𝑦   𝑣,𝐶   𝑣,𝐼,𝑦   𝑣,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem elrfirn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4827 . . . . . . 7 (𝐵𝑉 → (𝐶 ∈ 𝒫 𝐵𝐶𝐵))
21biimprd 238 . . . . . 6 (𝐵𝑉 → (𝐶𝐵𝐶 ∈ 𝒫 𝐵))
32ralimdv 2963 . . . . 5 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵))
43imp 445 . . . 4 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵)
5 eqid 2622 . . . . 5 (𝑦𝐼𝐶) = (𝑦𝐼𝐶)
65fmpt 6381 . . . 4 (∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ↔ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
74, 6sylib 208 . . 3 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
8 elrfirn 37258 . . 3 ((𝐵𝑉 ∧ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
97, 8syldan 487 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
10 inss1 3833 . . . . . 6 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
1110sseli 3599 . . . . 5 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
1211elpwid 4170 . . . 4 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
13 nffvmpt1 6199 . . . . . . . 8 𝑦((𝑦𝐼𝐶)‘𝑧)
14 nfcv 2764 . . . . . . . 8 𝑧((𝑦𝐼𝐶)‘𝑦)
15 fveq2 6191 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑦𝐼𝐶)‘𝑧) = ((𝑦𝐼𝐶)‘𝑦))
1613, 14, 15cbviin 4558 . . . . . . 7 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦)
17 simplr 792 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝑦𝐼)
18 simpll 790 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐵𝑉)
19 simpr 477 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶𝐵)
2018, 19ssexd 4805 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶 ∈ V)
215fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑦𝐼𝐶 ∈ V) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2217, 20, 21syl2anc 693 . . . . . . . . . . . 12 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2322ex 450 . . . . . . . . . . 11 ((𝐵𝑉𝑦𝐼) → (𝐶𝐵 → ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2423ralimdva 2962 . . . . . . . . . 10 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2524imp 445 . . . . . . . . 9 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
26 ssralv 3666 . . . . . . . . 9 (𝑣𝐼 → (∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2725, 26mpan9 486 . . . . . . . 8 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
28 iineq2 4538 . . . . . . . 8 (∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
2927, 28syl 17 . . . . . . 7 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
3016, 29syl5eq 2668 . . . . . 6 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 𝐶)
3130ineq2d 3814 . . . . 5 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) = (𝐵 𝑦𝑣 𝐶))
3231eqeq2d 2632 . . . 4 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3312, 32sylan2 491 . . 3 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3433rexbidva 3049 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
359, 34bitrd 268 1 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   ciin 4521  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  Fincfn 7955  ficfi 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317
This theorem is referenced by:  cmpfiiin  37260
  Copyright terms: Public domain W3C validator