MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp4 Structured version   Visualization version   GIF version

Theorem elxp4 7110
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7111, elxp6 7200, and elxp7 7201. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
elxp4 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5131 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
2 sneq 4187 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
32rneqd 5353 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
43unieqd 4446 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
5 vex 3203 . . . . . . . . . . 11 𝑥 ∈ V
6 vex 3203 . . . . . . . . . . 11 𝑦 ∈ V
75, 6op2nda 5620 . . . . . . . . . 10 ran {⟨𝑥, 𝑦⟩} = 𝑦
84, 7syl6req 2673 . . . . . . . . 9 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
98pm4.71ri 665 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
109anbi1i 731 . . . . . . 7 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
11 anass 681 . . . . . . 7 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1210, 11bitri 264 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
1312exbii 1774 . . . . 5 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
14 snex 4908 . . . . . . . 8 {𝐴} ∈ V
1514rnex 7100 . . . . . . 7 ran {𝐴} ∈ V
1615uniex 6953 . . . . . 6 ran {𝐴} ∈ V
17 opeq2 4403 . . . . . . . 8 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
1817eqeq2d 2632 . . . . . . 7 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
19 eleq1 2689 . . . . . . . 8 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
2019anbi2d 740 . . . . . . 7 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2118, 20anbi12d 747 . . . . . 6 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
2216, 21ceqsexv 3242 . . . . 5 (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
2313, 22bitri 264 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
24 sneq 4187 . . . . . . . . 9 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → {𝐴} = {⟨𝑥, ran {𝐴}⟩})
2524dmeqd 5326 . . . . . . . 8 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
2625unieqd 4446 . . . . . . 7 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → dom {𝐴} = dom {⟨𝑥, ran {𝐴}⟩})
275, 16op1sta 5617 . . . . . . 7 dom {⟨𝑥, ran {𝐴}⟩} = 𝑥
2826, 27syl6req 2673 . . . . . 6 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = dom {𝐴})
2928pm4.71ri 665 . . . . 5 (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
3029anbi1i 731 . . . 4 ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
31 anass 681 . . . 4 (((𝑥 = dom {𝐴} ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3223, 30, 313bitri 286 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3332exbii 1774 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3414dmex 7099 . . . 4 dom {𝐴} ∈ V
3534uniex 6953 . . 3 dom {𝐴} ∈ V
36 opeq1 4402 . . . . 5 (𝑥 = dom {𝐴} → ⟨𝑥, ran {𝐴}⟩ = ⟨ dom {𝐴}, ran {𝐴}⟩)
3736eqeq2d 2632 . . . 4 (𝑥 = dom {𝐴} → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩))
38 eleq1 2689 . . . . 5 (𝑥 = dom {𝐴} → (𝑥𝐵 dom {𝐴} ∈ 𝐵))
3938anbi1d 741 . . . 4 (𝑥 = dom {𝐴} → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
4037, 39anbi12d 747 . . 3 (𝑥 = dom {𝐴} → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶))))
4135, 40ceqsexv 3242 . 2 (∃𝑥(𝑥 = dom {𝐴} ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
421, 33, 413bitri 286 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ dom {𝐴}, ran {𝐴}⟩ ∧ ( dom {𝐴} ∈ 𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  {csn 4177  cop 4183   cuni 4436   × cxp 5112  dom cdm 5114  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  elxp6  7200  xpdom2  8055
  Copyright terms: Public domain W3C validator