MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp4 Structured version   Visualization version   Unicode version

Theorem elxp4 7110
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7111, elxp6 7200, and elxp7 7201. (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
elxp4  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )

Proof of Theorem elxp4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5131 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
2 sneq 4187 . . . . . . . . . . . 12  |-  ( A  =  <. x ,  y
>.  ->  { A }  =  { <. x ,  y
>. } )
32rneqd 5353 . . . . . . . . . . 11  |-  ( A  =  <. x ,  y
>.  ->  ran  { A }  =  ran  { <. x ,  y >. } )
43unieqd 4446 . . . . . . . . . 10  |-  ( A  =  <. x ,  y
>.  ->  U. ran  { A }  =  U. ran  { <. x ,  y >. } )
5 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
6 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
75, 6op2nda 5620 . . . . . . . . . 10  |-  U. ran  {
<. x ,  y >. }  =  y
84, 7syl6req 2673 . . . . . . . . 9  |-  ( A  =  <. x ,  y
>.  ->  y  =  U. ran  { A } )
98pm4.71ri 665 . . . . . . . 8  |-  ( A  =  <. x ,  y
>. 
<->  ( y  =  U. ran  { A }  /\  A  =  <. x ,  y >. ) )
109anbi1i 731 . . . . . . 7  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( ( y  =  U. ran  { A }  /\  A  = 
<. x ,  y >.
)  /\  ( x  e.  B  /\  y  e.  C ) ) )
11 anass 681 . . . . . . 7  |-  ( ( ( y  =  U. ran  { A }  /\  A  =  <. x ,  y >. )  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( y  = 
U. ran  { A }  /\  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
1210, 11bitri 264 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( y  = 
U. ran  { A }  /\  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) ) )
1312exbii 1774 . . . . 5  |-  ( E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) )  <->  E. y
( y  =  U. ran  { A }  /\  ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) ) )
14 snex 4908 . . . . . . . 8  |-  { A }  e.  _V
1514rnex 7100 . . . . . . 7  |-  ran  { A }  e.  _V
1615uniex 6953 . . . . . 6  |-  U. ran  { A }  e.  _V
17 opeq2 4403 . . . . . . . 8  |-  ( y  =  U. ran  { A }  ->  <. x ,  y >.  =  <. x ,  U. ran  { A } >. )
1817eqeq2d 2632 . . . . . . 7  |-  ( y  =  U. ran  { A }  ->  ( A  =  <. x ,  y
>. 
<->  A  =  <. x ,  U. ran  { A } >. ) )
19 eleq1 2689 . . . . . . . 8  |-  ( y  =  U. ran  { A }  ->  ( y  e.  C  <->  U. ran  { A }  e.  C
) )
2019anbi2d 740 . . . . . . 7  |-  ( y  =  U. ran  { A }  ->  ( ( x  e.  B  /\  y  e.  C )  <->  ( x  e.  B  /\  U.
ran  { A }  e.  C ) ) )
2118, 20anbi12d 747 . . . . . 6  |-  ( y  =  U. ran  { A }  ->  ( ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  ( A  = 
<. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) ) )
2216, 21ceqsexv 3242 . . . . 5  |-  ( E. y ( y  = 
U. ran  { A }  /\  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )  <->  ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C )
) )
2313, 22bitri 264 . . . 4  |-  ( E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) )  <->  ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C )
) )
24 sneq 4187 . . . . . . . . 9  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  { A }  =  { <. x ,  U. ran  { A } >. } )
2524dmeqd 5326 . . . . . . . 8  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  dom  { A }  =  dom  { <. x ,  U. ran  { A } >. } )
2625unieqd 4446 . . . . . . 7  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  U. dom  { A }  =  U. dom  { <. x ,  U. ran  { A } >. } )
275, 16op1sta 5617 . . . . . . 7  |-  U. dom  {
<. x ,  U. ran  { A } >. }  =  x
2826, 27syl6req 2673 . . . . . 6  |-  ( A  =  <. x ,  U. ran  { A } >.  ->  x  =  U. dom  { A } )
2928pm4.71ri 665 . . . . 5  |-  ( A  =  <. x ,  U. ran  { A } >.  <->  (
x  =  U. dom  { A }  /\  A  =  <. x ,  U. ran  { A } >. ) )
3029anbi1i 731 . . . 4  |-  ( ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) )  <->  ( (
x  =  U. dom  { A }  /\  A  =  <. x ,  U. ran  { A } >. )  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) ) )
31 anass 681 . . . 4  |-  ( ( ( x  =  U. dom  { A }  /\  A  =  <. x , 
U. ran  { A } >. )  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) )  <->  ( x  =  U. dom  { A }  /\  ( A  = 
<. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) ) )
3223, 30, 313bitri 286 . . 3  |-  ( E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) )  <->  ( x  =  U. dom  { A }  /\  ( A  = 
<. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) ) )
3332exbii 1774 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
)  <->  E. x ( x  =  U. dom  { A }  /\  ( A  =  <. x , 
U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
3414dmex 7099 . . . 4  |-  dom  { A }  e.  _V
3534uniex 6953 . . 3  |-  U. dom  { A }  e.  _V
36 opeq1 4402 . . . . 5  |-  ( x  =  U. dom  { A }  ->  <. x ,  U. ran  { A } >.  =  <. U. dom  { A } ,  U. ran  { A } >. )
3736eqeq2d 2632 . . . 4  |-  ( x  =  U. dom  { A }  ->  ( A  =  <. x ,  U. ran  { A } >.  <->  A  =  <. U. dom  { A } ,  U. ran  { A } >. ) )
38 eleq1 2689 . . . . 5  |-  ( x  =  U. dom  { A }  ->  ( x  e.  B  <->  U. dom  { A }  e.  B
) )
3938anbi1d 741 . . . 4  |-  ( x  =  U. dom  { A }  ->  ( ( x  e.  B  /\  U.
ran  { A }  e.  C )  <->  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
4037, 39anbi12d 747 . . 3  |-  ( x  =  U. dom  { A }  ->  ( ( A  =  <. x ,  U. ran  { A } >.  /\  ( x  e.  B  /\  U. ran  { A }  e.  C
) )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) ) )
4135, 40ceqsexv 3242 . 2  |-  ( E. x ( x  = 
U. dom  { A }  /\  ( A  = 
<. x ,  U. ran  { A } >.  /\  (
x  e.  B  /\  U.
ran  { A }  e.  C ) ) )  <-> 
( A  =  <. U.
dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C )
) )
421, 33, 413bitri 286 1  |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {csn 4177   <.cop 4183   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  elxp6  7200  xpdom2  8055
  Copyright terms: Public domain W3C validator