| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp4 | Structured version Visualization version Unicode version | ||
| Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7111, elxp6 7200, and elxp7 7201. (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| elxp4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5131 |
. 2
| |
| 2 | sneq 4187 |
. . . . . . . . . . . 12
| |
| 3 | 2 | rneqd 5353 |
. . . . . . . . . . 11
|
| 4 | 3 | unieqd 4446 |
. . . . . . . . . 10
|
| 5 | vex 3203 |
. . . . . . . . . . 11
| |
| 6 | vex 3203 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | op2nda 5620 |
. . . . . . . . . 10
|
| 8 | 4, 7 | syl6req 2673 |
. . . . . . . . 9
|
| 9 | 8 | pm4.71ri 665 |
. . . . . . . 8
|
| 10 | 9 | anbi1i 731 |
. . . . . . 7
|
| 11 | anass 681 |
. . . . . . 7
| |
| 12 | 10, 11 | bitri 264 |
. . . . . 6
|
| 13 | 12 | exbii 1774 |
. . . . 5
|
| 14 | snex 4908 |
. . . . . . . 8
| |
| 15 | 14 | rnex 7100 |
. . . . . . 7
|
| 16 | 15 | uniex 6953 |
. . . . . 6
|
| 17 | opeq2 4403 |
. . . . . . . 8
| |
| 18 | 17 | eqeq2d 2632 |
. . . . . . 7
|
| 19 | eleq1 2689 |
. . . . . . . 8
| |
| 20 | 19 | anbi2d 740 |
. . . . . . 7
|
| 21 | 18, 20 | anbi12d 747 |
. . . . . 6
|
| 22 | 16, 21 | ceqsexv 3242 |
. . . . 5
|
| 23 | 13, 22 | bitri 264 |
. . . 4
|
| 24 | sneq 4187 |
. . . . . . . . 9
| |
| 25 | 24 | dmeqd 5326 |
. . . . . . . 8
|
| 26 | 25 | unieqd 4446 |
. . . . . . 7
|
| 27 | 5, 16 | op1sta 5617 |
. . . . . . 7
|
| 28 | 26, 27 | syl6req 2673 |
. . . . . 6
|
| 29 | 28 | pm4.71ri 665 |
. . . . 5
|
| 30 | 29 | anbi1i 731 |
. . . 4
|
| 31 | anass 681 |
. . . 4
| |
| 32 | 23, 30, 31 | 3bitri 286 |
. . 3
|
| 33 | 32 | exbii 1774 |
. 2
|
| 34 | 14 | dmex 7099 |
. . . 4
|
| 35 | 34 | uniex 6953 |
. . 3
|
| 36 | opeq1 4402 |
. . . . 5
| |
| 37 | 36 | eqeq2d 2632 |
. . . 4
|
| 38 | eleq1 2689 |
. . . . 5
| |
| 39 | 38 | anbi1d 741 |
. . . 4
|
| 40 | 37, 39 | anbi12d 747 |
. . 3
|
| 41 | 35, 40 | ceqsexv 3242 |
. 2
|
| 42 | 1, 33, 41 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: elxp6 7200 xpdom2 8055 |
| Copyright terms: Public domain | W3C validator |