Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enrelmap Structured version   Visualization version   GIF version

Theorem enrelmap 38291
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 38300 for a demonstration of an natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enrelmap ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵𝑚 𝐴))

Proof of Theorem enrelmap
StepHypRef Expression
1 xpcomeng 8052 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 pwen 8133 . . . 4 ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
31, 2syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
4 xpexg 6960 . . . . 5 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
54ancoms 469 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
6 pw2eng 8066 . . . 4 ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
75, 6syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
8 entr 8008 . . 3 ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
93, 7, 8syl2anc 693 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
10 pw2eng 8066 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2𝑜𝑚 𝐵))
11 enrefg 7987 . . . . 5 (𝐴𝑉𝐴𝐴)
12 mapen 8124 . . . . 5 ((𝒫 𝐵 ≈ (2𝑜𝑚 𝐵) ∧ 𝐴𝐴) → (𝒫 𝐵𝑚 𝐴) ≈ ((2𝑜𝑚 𝐵) ↑𝑚 𝐴))
1310, 11, 12syl2anr 495 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵𝑚 𝐴) ≈ ((2𝑜𝑚 𝐵) ↑𝑚 𝐴))
14 2on 7568 . . . . 5 2𝑜 ∈ On
15 simpr 477 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
16 simpl 473 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
17 mapxpen 8126 . . . . 5 ((2𝑜 ∈ On ∧ 𝐵𝑊𝐴𝑉) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
1814, 15, 16, 17mp3an2i 1429 . . . 4 ((𝐴𝑉𝐵𝑊) → ((2𝑜𝑚 𝐵) ↑𝑚 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
19 entr 8008 . . . 4 (((𝒫 𝐵𝑚 𝐴) ≈ ((2𝑜𝑚 𝐵) ↑𝑚 𝐴) ∧ ((2𝑜𝑚 𝐵) ↑𝑚 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴))) → (𝒫 𝐵𝑚 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
2013, 18, 19syl2anc 693 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵𝑚 𝐴) ≈ (2𝑜𝑚 (𝐵 × 𝐴)))
2120ensymd 8007 . 2 ((𝐴𝑉𝐵𝑊) → (2𝑜𝑚 (𝐵 × 𝐴)) ≈ (𝒫 𝐵𝑚 𝐴))
22 entr 8008 . 2 ((𝒫 (𝐴 × 𝐵) ≈ (2𝑜𝑚 (𝐵 × 𝐴)) ∧ (2𝑜𝑚 (𝐵 × 𝐴)) ≈ (𝒫 𝐵𝑚 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵𝑚 𝐴))
239, 21, 22syl2anc 693 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  Vcvv 3200  𝒫 cpw 4158   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  2𝑜c2o 7554  𝑚 cmap 7857  cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956
This theorem is referenced by:  enrelmapr  38292  enmappw  38293
  Copyright terms: Public domain W3C validator