Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enrelmap Structured version   Visualization version   Unicode version

Theorem enrelmap 38291
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 38300 for a demonstration of an natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enrelmap  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  X.  B )  ~~  ( ~P B  ^m  A ) )

Proof of Theorem enrelmap
StepHypRef Expression
1 xpcomeng 8052 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )
2 pwen 8133 . . . 4  |-  ( ( A  X.  B ) 
~~  ( B  X.  A )  ->  ~P ( A  X.  B
)  ~~  ~P ( B  X.  A ) )
31, 2syl 17 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  X.  B )  ~~  ~P ( B  X.  A
) )
4 xpexg 6960 . . . . 5  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  A
)  e.  _V )
54ancoms 469 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  A
)  e.  _V )
6 pw2eng 8066 . . . 4  |-  ( ( B  X.  A )  e.  _V  ->  ~P ( B  X.  A
)  ~~  ( 2o  ^m  ( B  X.  A
) ) )
75, 6syl 17 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( B  X.  A )  ~~  ( 2o  ^m  ( B  X.  A ) ) )
8 entr 8008 . . 3  |-  ( ( ~P ( A  X.  B )  ~~  ~P ( B  X.  A
)  /\  ~P ( B  X.  A )  ~~  ( 2o  ^m  ( B  X.  A ) ) )  ->  ~P ( A  X.  B )  ~~  ( 2o  ^m  ( B  X.  A ) ) )
93, 7, 8syl2anc 693 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  X.  B )  ~~  ( 2o  ^m  ( B  X.  A ) ) )
10 pw2eng 8066 . . . . 5  |-  ( B  e.  W  ->  ~P B  ~~  ( 2o  ^m  B ) )
11 enrefg 7987 . . . . 5  |-  ( A  e.  V  ->  A  ~~  A )
12 mapen 8124 . . . . 5  |-  ( ( ~P B  ~~  ( 2o  ^m  B )  /\  A  ~~  A )  -> 
( ~P B  ^m  A )  ~~  (
( 2o  ^m  B
)  ^m  A )
)
1310, 11, 12syl2anr 495 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P B  ^m  A )  ~~  (
( 2o  ^m  B
)  ^m  A )
)
14 2on 7568 . . . . 5  |-  2o  e.  On
15 simpr 477 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
16 simpl 473 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  A  e.  V )
17 mapxpen 8126 . . . . 5  |-  ( ( 2o  e.  On  /\  B  e.  W  /\  A  e.  V )  ->  ( ( 2o  ^m  B )  ^m  A
)  ~~  ( 2o  ^m  ( B  X.  A
) ) )
1814, 15, 16, 17mp3an2i 1429 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( 2o  ^m  B )  ^m  A
)  ~~  ( 2o  ^m  ( B  X.  A
) ) )
19 entr 8008 . . . 4  |-  ( ( ( ~P B  ^m  A )  ~~  (
( 2o  ^m  B
)  ^m  A )  /\  ( ( 2o  ^m  B )  ^m  A
)  ~~  ( 2o  ^m  ( B  X.  A
) ) )  -> 
( ~P B  ^m  A )  ~~  ( 2o  ^m  ( B  X.  A ) ) )
2013, 18, 19syl2anc 693 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P B  ^m  A )  ~~  ( 2o  ^m  ( B  X.  A ) ) )
2120ensymd 8007 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2o  ^m  ( B  X.  A ) ) 
~~  ( ~P B  ^m  A ) )
22 entr 8008 . 2  |-  ( ( ~P ( A  X.  B )  ~~  ( 2o  ^m  ( B  X.  A ) )  /\  ( 2o  ^m  ( B  X.  A ) ) 
~~  ( ~P B  ^m  A ) )  ->  ~P ( A  X.  B
)  ~~  ( ~P B  ^m  A ) )
239, 21, 22syl2anc 693 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  X.  B )  ~~  ( ~P B  ^m  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200   ~Pcpw 4158   class class class wbr 4653    X. cxp 5112   Oncon0 5723  (class class class)co 6650   2oc2o 7554    ^m cmap 7857    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-map 7859  df-en 7956
This theorem is referenced by:  enrelmapr  38292  enmappw  38293
  Copyright terms: Public domain W3C validator