MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfp1lem3 Structured version   Visualization version   GIF version

Theorem cantnfp1lem3 8577
Description: Lemma for cantnfp1 8578. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfp1.g (𝜑𝐺𝑆)
cantnfp1.x (𝜑𝑋𝐵)
cantnfp1.y (𝜑𝑌𝐴)
cantnfp1.s (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
cantnfp1.f 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
cantnfp1.e (𝜑 → ∅ ∈ 𝑌)
cantnfp1.o 𝑂 = OrdIso( E , (𝐹 supp ∅))
cantnfp1.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑂𝑘)) ·𝑜 (𝐹‘(𝑂𝑘))) +𝑜 𝑧)), ∅)
cantnfp1.k 𝐾 = OrdIso( E , (𝐺 supp ∅))
cantnfp1.m 𝑀 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐾𝑘)) ·𝑜 (𝐺‘(𝐾𝑘))) +𝑜 𝑧)), ∅)
Assertion
Ref Expression
cantnfp1lem3 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
Distinct variable groups:   𝑡,𝑘,𝑧,𝐵   𝐴,𝑘,𝑡,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑡,𝑧   𝑘,𝐺,𝑡,𝑧   𝑘,𝐾,𝑡,𝑧   𝑘,𝑂,𝑧   𝜑,𝑘,𝑡,𝑧   𝑘,𝑌,𝑡,𝑧   𝑘,𝑋,𝑡,𝑧
Allowed substitution hints:   𝐹(𝑡)   𝐻(𝑧,𝑡,𝑘)   𝑀(𝑧,𝑡,𝑘)   𝑂(𝑡)

Proof of Theorem cantnfp1lem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 cantnfp1.o . . 3 𝑂 = OrdIso( E , (𝐹 supp ∅))
5 cantnfp1.g . . . 4 (𝜑𝐺𝑆)
6 cantnfp1.x . . . 4 (𝜑𝑋𝐵)
7 cantnfp1.y . . . 4 (𝜑𝑌𝐴)
8 cantnfp1.s . . . 4 (𝜑 → (𝐺 supp ∅) ⊆ 𝑋)
9 cantnfp1.f . . . 4 𝐹 = (𝑡𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)))
101, 2, 3, 5, 6, 7, 8, 9cantnfp1lem1 8575 . . 3 (𝜑𝐹𝑆)
11 cantnfp1.h . . 3 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑂𝑘)) ·𝑜 (𝐹‘(𝑂𝑘))) +𝑜 𝑧)), ∅)
121, 2, 3, 4, 10, 11cantnfval 8565 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝑂))
13 cantnfp1.e . . . 4 (𝜑 → ∅ ∈ 𝑌)
141, 2, 3, 5, 6, 7, 8, 9, 13, 4cantnfp1lem2 8576 . . 3 (𝜑 → dom 𝑂 = suc dom 𝑂)
1514fveq2d 6195 . 2 (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc dom 𝑂))
161, 2, 3, 4, 10cantnfcl 8564 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝑂 ∈ ω))
1716simprd 479 . . . . . 6 (𝜑 → dom 𝑂 ∈ ω)
1814, 17eqeltrrd 2702 . . . . 5 (𝜑 → suc dom 𝑂 ∈ ω)
19 peano2b 7081 . . . . 5 ( dom 𝑂 ∈ ω ↔ suc dom 𝑂 ∈ ω)
2018, 19sylibr 224 . . . 4 (𝜑 dom 𝑂 ∈ ω)
211, 2, 3, 4, 10, 11cantnfsuc 8567 . . . 4 ((𝜑 dom 𝑂 ∈ ω) → (𝐻‘suc dom 𝑂) = (((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) +𝑜 (𝐻 dom 𝑂)))
2220, 21mpdan 702 . . 3 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) +𝑜 (𝐻 dom 𝑂)))
23 suppssdm 7308 . . . . . . . . . . . . . . . . 17 (𝐹 supp ∅) ⊆ dom 𝐹
247adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐵) → 𝑌𝐴)
251, 2, 3cantnfs 8563 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
265, 25mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
2726simpld 475 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐺:𝐵𝐴)
2827ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡𝐵) → (𝐺𝑡) ∈ 𝐴)
2924, 28ifcld 4131 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡𝐵) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) ∈ 𝐴)
3029, 9fmptd 6385 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:𝐵𝐴)
31 fdm 6051 . . . . . . . . . . . . . . . . . 18 (𝐹:𝐵𝐴 → dom 𝐹 = 𝐵)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐵)
3323, 32syl5sseq 3653 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
343, 33ssexd 4805 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) ∈ V)
3516simpld 475 . . . . . . . . . . . . . . 15 (𝜑 → E We (𝐹 supp ∅))
364oiiso 8442 . . . . . . . . . . . . . . 15 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
3734, 35, 36syl2anc 693 . . . . . . . . . . . . . 14 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)))
38 isof1o 6573 . . . . . . . . . . . . . 14 (𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅))
40 f1ocnv 6149 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂)
41 f1of 6137 . . . . . . . . . . . . 13 (𝑂:(𝐹 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐹 supp ∅)⟶dom 𝑂)
4239, 40, 413syl 18 . . . . . . . . . . . 12 (𝜑𝑂:(𝐹 supp ∅)⟶dom 𝑂)
43 iftrue 4092 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑋 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = 𝑌)
4443, 9fvmptg 6280 . . . . . . . . . . . . . . 15 ((𝑋𝐵𝑌𝐴) → (𝐹𝑋) = 𝑌)
456, 7, 44syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑋) = 𝑌)
46 onelon 5748 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑌𝐴) → 𝑌 ∈ On)
472, 7, 46syl2anc 693 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ On)
48 on0eln0 5780 . . . . . . . . . . . . . . . 16 (𝑌 ∈ On → (∅ ∈ 𝑌𝑌 ≠ ∅))
4947, 48syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (∅ ∈ 𝑌𝑌 ≠ ∅))
5013, 49mpbid 222 . . . . . . . . . . . . . 14 (𝜑𝑌 ≠ ∅)
5145, 50eqnetrd 2861 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑋) ≠ ∅)
52 ffn 6045 . . . . . . . . . . . . . . 15 (𝐹:𝐵𝐴𝐹 Fn 𝐵)
5330, 52syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
54 0ex 4790 . . . . . . . . . . . . . . 15 ∅ ∈ V
5554a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ∈ V)
56 elsuppfn 7303 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
5753, 3, 55, 56syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → (𝑋 ∈ (𝐹 supp ∅) ↔ (𝑋𝐵 ∧ (𝐹𝑋) ≠ ∅)))
586, 51, 57mpbir2and 957 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (𝐹 supp ∅))
5942, 58ffvelrnd 6360 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
60 elssuni 4467 . . . . . . . . . . 11 ((𝑂𝑋) ∈ dom 𝑂 → (𝑂𝑋) ⊆ dom 𝑂)
6159, 60syl 17 . . . . . . . . . 10 (𝜑 → (𝑂𝑋) ⊆ dom 𝑂)
624oicl 8434 . . . . . . . . . . . 12 Ord dom 𝑂
63 ordelon 5747 . . . . . . . . . . . 12 ((Ord dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂) → (𝑂𝑋) ∈ On)
6462, 59, 63sylancr 695 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ On)
65 nnon 7071 . . . . . . . . . . . 12 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ On)
6620, 65syl 17 . . . . . . . . . . 11 (𝜑 dom 𝑂 ∈ On)
67 ontri1 5757 . . . . . . . . . . 11 (((𝑂𝑋) ∈ On ∧ dom 𝑂 ∈ On) → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
6864, 66, 67syl2anc 693 . . . . . . . . . 10 (𝜑 → ((𝑂𝑋) ⊆ dom 𝑂 ↔ ¬ dom 𝑂 ∈ (𝑂𝑋)))
6961, 68mpbid 222 . . . . . . . . 9 (𝜑 → ¬ dom 𝑂 ∈ (𝑂𝑋))
70 sucidg 5803 . . . . . . . . . . . . . 14 ( dom 𝑂 ∈ ω → dom 𝑂 ∈ suc dom 𝑂)
7120, 70syl 17 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 ∈ suc dom 𝑂)
7271, 14eleqtrrd 2704 . . . . . . . . . . . 12 (𝜑 dom 𝑂 ∈ dom 𝑂)
73 isorel 6576 . . . . . . . . . . . 12 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ ( dom 𝑂 ∈ dom 𝑂 ∧ (𝑂𝑋) ∈ dom 𝑂)) → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
7437, 72, 59, 73syl12anc 1324 . . . . . . . . . . 11 (𝜑 → ( dom 𝑂 E (𝑂𝑋) ↔ (𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋))))
75 fvex 6201 . . . . . . . . . . . 12 (𝑂𝑋) ∈ V
7675epelc 5031 . . . . . . . . . . 11 ( dom 𝑂 E (𝑂𝑋) ↔ dom 𝑂 ∈ (𝑂𝑋))
77 fvex 6201 . . . . . . . . . . . 12 (𝑂‘(𝑂𝑋)) ∈ V
7877epelc 5031 . . . . . . . . . . 11 ((𝑂 dom 𝑂) E (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)))
7974, 76, 783bitr3g 302 . . . . . . . . . 10 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋))))
80 f1ocnvfv2 6533 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ∧ 𝑋 ∈ (𝐹 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
8139, 58, 80syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
8281eleq2d 2687 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝑂‘(𝑂𝑋)) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
8379, 82bitrd 268 . . . . . . . . 9 (𝜑 → ( dom 𝑂 ∈ (𝑂𝑋) ↔ (𝑂 dom 𝑂) ∈ 𝑋))
8469, 83mtbid 314 . . . . . . . 8 (𝜑 → ¬ (𝑂 dom 𝑂) ∈ 𝑋)
858sseld 3602 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → (𝑂 dom 𝑂) ∈ 𝑋))
86 onss 6990 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → 𝐵 ⊆ On)
873, 86syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ On)
8833, 87sstrd 3613 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) ⊆ On)
894oif 8435 . . . . . . . . . . . . . . . 16 𝑂:dom 𝑂⟶(𝐹 supp ∅)
9089ffvelrni 6358 . . . . . . . . . . . . . . 15 ( dom 𝑂 ∈ dom 𝑂 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
9172, 90syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑂 dom 𝑂) ∈ (𝐹 supp ∅))
9288, 91sseldd 3604 . . . . . . . . . . . . 13 (𝜑 → (𝑂 dom 𝑂) ∈ On)
93 eloni 5733 . . . . . . . . . . . . 13 ((𝑂 dom 𝑂) ∈ On → Ord (𝑂 dom 𝑂))
9492, 93syl 17 . . . . . . . . . . . 12 (𝜑 → Ord (𝑂 dom 𝑂))
95 ordn2lp 5743 . . . . . . . . . . . 12 (Ord (𝑂 dom 𝑂) → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
9694, 95syl 17 . . . . . . . . . . 11 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
97 imnan 438 . . . . . . . . . . 11 (((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)) ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
9896, 97sylibr 224 . . . . . . . . . 10 (𝜑 → ((𝑂 dom 𝑂) ∈ 𝑋 → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
9985, 98syld 47 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
100 onelon 5748 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
1013, 6, 100syl2anc 693 . . . . . . . . . . . 12 (𝜑𝑋 ∈ On)
102 eloni 5733 . . . . . . . . . . . 12 (𝑋 ∈ On → Ord 𝑋)
103101, 102syl 17 . . . . . . . . . . 11 (𝜑 → Ord 𝑋)
104 ordirr 5741 . . . . . . . . . . 11 (Ord 𝑋 → ¬ 𝑋𝑋)
105103, 104syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝑋𝑋)
106 elsni 4194 . . . . . . . . . . . 12 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑂 dom 𝑂) = 𝑋)
107106eleq2d 2687 . . . . . . . . . . 11 ((𝑂 dom 𝑂) ∈ {𝑋} → (𝑋 ∈ (𝑂 dom 𝑂) ↔ 𝑋𝑋))
108107notbid 308 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ {𝑋} → (¬ 𝑋 ∈ (𝑂 dom 𝑂) ↔ ¬ 𝑋𝑋))
109105, 108syl5ibrcom 237 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ {𝑋} → ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
110 eldifi 3732 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘𝐵)
111110adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑘𝐵)
1127adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → 𝑌𝐴)
113 fvex 6201 . . . . . . . . . . . . . . 15 (𝐺𝑘) ∈ V
114 ifexg 4157 . . . . . . . . . . . . . . 15 ((𝑌𝐴 ∧ (𝐺𝑘) ∈ V) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
115112, 113, 114sylancl 694 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
116 eqeq1 2626 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑘 → (𝑡 = 𝑋𝑘 = 𝑋))
117 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑘 → (𝐺𝑡) = (𝐺𝑘))
118116, 117ifbieq2d 4111 . . . . . . . . . . . . . . 15 (𝑡 = 𝑘 → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
119118, 9fvmptg 6280 . . . . . . . . . . . . . 14 ((𝑘𝐵 ∧ if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
120111, 115, 119syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
121 eldifn 3733 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
122121adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
123 velsn 4193 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} ↔ 𝑘 = 𝑋)
124 elun2 3781 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑋} → 𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
125123, 124sylbir 225 . . . . . . . . . . . . . . 15 (𝑘 = 𝑋𝑘 ∈ ((𝐺 supp ∅) ∪ {𝑋}))
126122, 125nsyl 135 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → ¬ 𝑘 = 𝑋)
127126iffalsed 4097 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
128 ssun1 3776 . . . . . . . . . . . . . . . 16 (𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋})
129 sscon 3744 . . . . . . . . . . . . . . . 16 ((𝐺 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}) → (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅)))
130128, 129ax-mp 5 . . . . . . . . . . . . . . 15 (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) ⊆ (𝐵 ∖ (𝐺 supp ∅))
131130sseli 3599 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋})) → 𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅)))
132 ssid 3624 . . . . . . . . . . . . . . . 16 (𝐺 supp ∅) ⊆ (𝐺 supp ∅)
133132a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅))
13427, 133, 3, 13suppssr 7326 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺𝑘) = ∅)
135131, 134sylan2 491 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐺𝑘) = ∅)
136120, 127, 1353eqtrd 2660 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐵 ∖ ((𝐺 supp ∅) ∪ {𝑋}))) → (𝐹𝑘) = ∅)
13730, 136suppss 7325 . . . . . . . . . . 11 (𝜑 → (𝐹 supp ∅) ⊆ ((𝐺 supp ∅) ∪ {𝑋}))
138137, 91sseldd 3604 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}))
139 elun 3753 . . . . . . . . . 10 ((𝑂 dom 𝑂) ∈ ((𝐺 supp ∅) ∪ {𝑋}) ↔ ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
140138, 139sylib 208 . . . . . . . . 9 (𝜑 → ((𝑂 dom 𝑂) ∈ (𝐺 supp ∅) ∨ (𝑂 dom 𝑂) ∈ {𝑋}))
14199, 109, 140mpjaod 396 . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑂 dom 𝑂))
142 ioran 511 . . . . . . . 8 (¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)) ↔ (¬ (𝑂 dom 𝑂) ∈ 𝑋 ∧ ¬ 𝑋 ∈ (𝑂 dom 𝑂)))
14384, 141, 142sylanbrc 698 . . . . . . 7 (𝜑 → ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂)))
144 ordtri3 5759 . . . . . . . 8 ((Ord (𝑂 dom 𝑂) ∧ Ord 𝑋) → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
14594, 103, 144syl2anc 693 . . . . . . 7 (𝜑 → ((𝑂 dom 𝑂) = 𝑋 ↔ ¬ ((𝑂 dom 𝑂) ∈ 𝑋𝑋 ∈ (𝑂 dom 𝑂))))
146143, 145mpbird 247 . . . . . 6 (𝜑 → (𝑂 dom 𝑂) = 𝑋)
147146oveq2d 6666 . . . . 5 (𝜑 → (𝐴𝑜 (𝑂 dom 𝑂)) = (𝐴𝑜 𝑋))
148146fveq2d 6195 . . . . . 6 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = (𝐹𝑋))
149148, 45eqtrd 2656 . . . . 5 (𝜑 → (𝐹‘(𝑂 dom 𝑂)) = 𝑌)
150147, 149oveq12d 6668 . . . 4 (𝜑 → ((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) = ((𝐴𝑜 𝑋) ·𝑜 𝑌))
151 nnord 7073 . . . . . . . . 9 ( dom 𝑂 ∈ ω → Ord dom 𝑂)
15220, 151syl 17 . . . . . . . 8 (𝜑 → Ord dom 𝑂)
153 sssucid 5802 . . . . . . . . . 10 dom 𝑂 ⊆ suc dom 𝑂
154153, 14syl5sseqr 3654 . . . . . . . . 9 (𝜑 dom 𝑂 ⊆ dom 𝑂)
155 f1ofo 6144 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → 𝑂:dom 𝑂onto→(𝐹 supp ∅))
15639, 155syl 17 . . . . . . . . . . . 12 (𝜑𝑂:dom 𝑂onto→(𝐹 supp ∅))
157 foima 6120 . . . . . . . . . . . 12 (𝑂:dom 𝑂onto→(𝐹 supp ∅) → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
158156, 157syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂 “ dom 𝑂) = (𝐹 supp ∅))
159 ffn 6045 . . . . . . . . . . . . . 14 (𝑂:dom 𝑂⟶(𝐹 supp ∅) → 𝑂 Fn dom 𝑂)
16089, 159ax-mp 5 . . . . . . . . . . . . 13 𝑂 Fn dom 𝑂
161 fnsnfv 6258 . . . . . . . . . . . . 13 ((𝑂 Fn dom 𝑂 dom 𝑂 ∈ dom 𝑂) → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
162160, 72, 161sylancr 695 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = (𝑂 “ { dom 𝑂}))
163146sneqd 4189 . . . . . . . . . . . 12 (𝜑 → {(𝑂 dom 𝑂)} = {𝑋})
164162, 163eqtr3d 2658 . . . . . . . . . . 11 (𝜑 → (𝑂 “ { dom 𝑂}) = {𝑋})
165158, 164difeq12d 3729 . . . . . . . . . 10 (𝜑 → ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})) = ((𝐹 supp ∅) ∖ {𝑋}))
166 ordirr 5741 . . . . . . . . . . . . . . . . 17 (Ord dom 𝑂 → ¬ dom 𝑂 dom 𝑂)
167152, 166syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ dom 𝑂 dom 𝑂)
168 disjsn 4246 . . . . . . . . . . . . . . . 16 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ ¬ dom 𝑂 dom 𝑂)
169167, 168sylibr 224 . . . . . . . . . . . . . . 15 (𝜑 → ( dom 𝑂 ∩ { dom 𝑂}) = ∅)
170 disj3 4021 . . . . . . . . . . . . . . 15 (( dom 𝑂 ∩ { dom 𝑂}) = ∅ ↔ dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
171169, 170sylib 208 . . . . . . . . . . . . . 14 (𝜑 dom 𝑂 = ( dom 𝑂 ∖ { dom 𝑂}))
172 difun2 4048 . . . . . . . . . . . . . 14 (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}) = ( dom 𝑂 ∖ { dom 𝑂})
173171, 172syl6eqr 2674 . . . . . . . . . . . . 13 (𝜑 dom 𝑂 = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
174 df-suc 5729 . . . . . . . . . . . . . . 15 suc dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂})
17514, 174syl6eq 2672 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑂 = ( dom 𝑂 ∪ { dom 𝑂}))
176175difeq1d 3727 . . . . . . . . . . . . 13 (𝜑 → (dom 𝑂 ∖ { dom 𝑂}) = (( dom 𝑂 ∪ { dom 𝑂}) ∖ { dom 𝑂}))
177173, 176eqtr4d 2659 . . . . . . . . . . . 12 (𝜑 dom 𝑂 = (dom 𝑂 ∖ { dom 𝑂}))
178177imaeq2d 5466 . . . . . . . . . . 11 (𝜑 → (𝑂 dom 𝑂) = (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})))
179 dff1o3 6143 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) ↔ (𝑂:dom 𝑂onto→(𝐹 supp ∅) ∧ Fun 𝑂))
180179simprbi 480 . . . . . . . . . . . 12 (𝑂:dom 𝑂1-1-onto→(𝐹 supp ∅) → Fun 𝑂)
181 imadif 5973 . . . . . . . . . . . 12 (Fun 𝑂 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
18239, 180, 1813syl 18 . . . . . . . . . . 11 (𝜑 → (𝑂 “ (dom 𝑂 ∖ { dom 𝑂})) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
183178, 182eqtrd 2656 . . . . . . . . . 10 (𝜑 → (𝑂 dom 𝑂) = ((𝑂 “ dom 𝑂) ∖ (𝑂 “ { dom 𝑂})))
1848, 105ssneldd 3606 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝐺 supp ∅))
185 disjsn 4246 . . . . . . . . . . . . 13 (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐺 supp ∅))
186184, 185sylibr 224 . . . . . . . . . . . 12 (𝜑 → ((𝐺 supp ∅) ∩ {𝑋}) = ∅)
187 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21 (𝐺𝑋) ∈ V
188 dif1o 7580 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑋) ∈ (V ∖ 1𝑜) ↔ ((𝐺𝑋) ∈ V ∧ (𝐺𝑋) ≠ ∅))
189187, 188mpbiran 953 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑋) ∈ (V ∖ 1𝑜) ↔ (𝐺𝑋) ≠ ∅)
190 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺:𝐵𝐴𝐺 Fn 𝐵)
19127, 190syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn 𝐵)
192 elsuppfn 7303 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
193191, 3, 55, 192syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
194189a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1𝑜) ↔ (𝐺𝑋) ≠ ∅))
195194bicomd 213 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐺𝑋) ≠ ∅ ↔ (𝐺𝑋) ∈ (V ∖ 1𝑜)))
196195anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1𝑜))))
197193, 196bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1𝑜))))
1988sseld 3602 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 ∈ (𝐺 supp ∅) → 𝑋𝑋))
199197, 198sylbird 250 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑋𝐵 ∧ (𝐺𝑋) ∈ (V ∖ 1𝑜)) → 𝑋𝑋))
2006, 199mpand 711 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐺𝑋) ∈ (V ∖ 1𝑜) → 𝑋𝑋))
201189, 200syl5bir 233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐺𝑋) ≠ ∅ → 𝑋𝑋))
202201necon1bd 2812 . . . . . . . . . . . . . . . . . 18 (𝜑 → (¬ 𝑋𝑋 → (𝐺𝑋) = ∅))
203105, 202mpd 15 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺𝑋) = ∅)
204203adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑋) = ∅)
205 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑋 → (𝐺𝑘) = (𝐺𝑋))
206205eqeq1d 2624 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑋 → ((𝐺𝑘) = ∅ ↔ (𝐺𝑋) = ∅))
207204, 206syl5ibrcom 237 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝑘 = 𝑋 → (𝐺𝑘) = ∅))
208 eldifi 3732 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅)) → 𝑘𝐵)
209208adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑘𝐵)
2107adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → 𝑌𝐴)
211210, 113, 114sylancl 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) ∈ V)
212209, 211, 119syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)))
213 ssid 3624 . . . . . . . . . . . . . . . . . . 19 (𝐹 supp ∅) ⊆ (𝐹 supp ∅)
214213a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅))
21530, 214, 3, 13suppssr 7326 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹𝑘) = ∅)
216212, 215eqtr3d 2658 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅)
217 iffalse 4095 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑋 → if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = (𝐺𝑘))
218217eqeq1d 2624 . . . . . . . . . . . . . . . 16 𝑘 = 𝑋 → (if(𝑘 = 𝑋, 𝑌, (𝐺𝑘)) = ∅ ↔ (𝐺𝑘) = ∅))
219216, 218syl5ibcom 235 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (¬ 𝑘 = 𝑋 → (𝐺𝑘) = ∅))
220207, 219pm2.61d 170 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐺𝑘) = ∅)
22127, 220suppss 7325 . . . . . . . . . . . . 13 (𝜑 → (𝐺 supp ∅) ⊆ (𝐹 supp ∅))
222 reldisj 4020 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ⊆ (𝐹 supp ∅) → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
223221, 222syl 17 . . . . . . . . . . . 12 (𝜑 → (((𝐺 supp ∅) ∩ {𝑋}) = ∅ ↔ (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋})))
224186, 223mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐺 supp ∅) ⊆ ((𝐹 supp ∅) ∖ {𝑋}))
225 uncom 3757 . . . . . . . . . . . . 13 ((𝐺 supp ∅) ∪ {𝑋}) = ({𝑋} ∪ (𝐺 supp ∅))
226137, 225syl6sseq 3651 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)))
227 ssundif 4052 . . . . . . . . . . . 12 ((𝐹 supp ∅) ⊆ ({𝑋} ∪ (𝐺 supp ∅)) ↔ ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
228226, 227sylib 208 . . . . . . . . . . 11 (𝜑 → ((𝐹 supp ∅) ∖ {𝑋}) ⊆ (𝐺 supp ∅))
229224, 228eqssd 3620 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) = ((𝐹 supp ∅) ∖ {𝑋}))
230165, 183, 2293eqtr4rd 2667 . . . . . . . . 9 (𝜑 → (𝐺 supp ∅) = (𝑂 dom 𝑂))
231 isores3 6585 . . . . . . . . 9 ((𝑂 Isom E , E (dom 𝑂, (𝐹 supp ∅)) ∧ dom 𝑂 ⊆ dom 𝑂 ∧ (𝐺 supp ∅) = (𝑂 dom 𝑂)) → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
23237, 154, 230, 231syl3anc 1326 . . . . . . . 8 (𝜑 → (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅)))
233 cantnfp1.k . . . . . . . . . . 11 𝐾 = OrdIso( E , (𝐺 supp ∅))
2341, 2, 3, 233, 5cantnfcl 8564 . . . . . . . . . 10 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝐾 ∈ ω))
235234simpld 475 . . . . . . . . 9 (𝜑 → E We (𝐺 supp ∅))
236 epse 5097 . . . . . . . . 9 E Se (𝐺 supp ∅)
237233oieu 8444 . . . . . . . . 9 (( E We (𝐺 supp ∅) ∧ E Se (𝐺 supp ∅)) → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
238235, 236, 237sylancl 694 . . . . . . . 8 (𝜑 → ((Ord dom 𝑂 ∧ (𝑂 dom 𝑂) Isom E , E ( dom 𝑂, (𝐺 supp ∅))) ↔ ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾)))
239152, 232, 238mpbi2and 956 . . . . . . 7 (𝜑 → ( dom 𝑂 = dom 𝐾 ∧ (𝑂 dom 𝑂) = 𝐾))
240239simpld 475 . . . . . 6 (𝜑 dom 𝑂 = dom 𝐾)
241240fveq2d 6195 . . . . 5 (𝜑 → (𝑀 dom 𝑂) = (𝑀‘dom 𝐾))
242 eleq1 2689 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂))
243 fveq2 6191 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
244 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = (𝑀‘∅))
245 cantnfp1.m . . . . . . . . . . . . . 14 𝑀 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐾𝑘)) ·𝑜 (𝐺‘(𝐾𝑘))) +𝑜 𝑧)), ∅)
246245seqom0g 7551 . . . . . . . . . . . . 13 (∅ ∈ V → (𝑀‘∅) = ∅)
24754, 246ax-mp 5 . . . . . . . . . . . 12 (𝑀‘∅) = ∅
248244, 247syl6eq 2672 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑀𝑥) = ∅)
249243, 248eqeq12d 2637 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘∅) = ∅))
250242, 249imbi12d 334 . . . . . . . . 9 (𝑥 = ∅ → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)))
251250imbi2d 330 . . . . . . . 8 (𝑥 = ∅ → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))))
252 eleq1 2689 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
253 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
254 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
255253, 254eqeq12d 2637 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻𝑦) = (𝑀𝑦)))
256252, 255imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
257256imbi2d 330 . . . . . . . 8 (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)))))
258 eleq1 2689 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂))
259 fveq2 6191 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
260 fveq2 6191 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑀𝑥) = (𝑀‘suc 𝑦))
261259, 260eqeq12d 2637 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
262258, 261imbi12d 334 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
263262imbi2d 330 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
264 eleq1 2689 . . . . . . . . . 10 (𝑥 = dom 𝑂 → (𝑥 ∈ dom 𝑂 dom 𝑂 ∈ dom 𝑂))
265 fveq2 6191 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝐻𝑥) = (𝐻 dom 𝑂))
266 fveq2 6191 . . . . . . . . . . 11 (𝑥 = dom 𝑂 → (𝑀𝑥) = (𝑀 dom 𝑂))
267265, 266eqeq12d 2637 . . . . . . . . . 10 (𝑥 = dom 𝑂 → ((𝐻𝑥) = (𝑀𝑥) ↔ (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
268264, 267imbi12d 334 . . . . . . . . 9 (𝑥 = dom 𝑂 → ((𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥)) ↔ ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
269268imbi2d 330 . . . . . . . 8 (𝑥 = dom 𝑂 → ((𝜑 → (𝑥 ∈ dom 𝑂 → (𝐻𝑥) = (𝑀𝑥))) ↔ (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))))
27011seqom0g 7551 . . . . . . . . . 10 (∅ ∈ V → (𝐻‘∅) = ∅)
27154, 270mp1i 13 . . . . . . . . 9 (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅)
272271a1i 11 . . . . . . . 8 (𝜑 → (∅ ∈ dom 𝑂 → (𝐻‘∅) = ∅))
273 nnord 7073 . . . . . . . . . . . . . . . 16 (dom 𝑂 ∈ ω → Ord dom 𝑂)
27417, 273syl 17 . . . . . . . . . . . . . . 15 (𝜑 → Ord dom 𝑂)
275 ordtr 5737 . . . . . . . . . . . . . . 15 (Ord dom 𝑂 → Tr dom 𝑂)
276274, 275syl 17 . . . . . . . . . . . . . 14 (𝜑 → Tr dom 𝑂)
277 trsuc 5810 . . . . . . . . . . . . . 14 ((Tr dom 𝑂 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
278276, 277sylan 488 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝑂)
279278ex 450 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂𝑦 ∈ dom 𝑂))
280279imim1d 82 . . . . . . . . . . 11 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))))
281 oveq2 6658 . . . . . . . . . . . . . 14 ((𝐻𝑦) = (𝑀𝑦) → (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦)))
282 elnn 7075 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → 𝑦 ∈ ω)
283282ancoms 469 . . . . . . . . . . . . . . . . . 18 ((dom 𝑂 ∈ ω ∧ 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
28417, 283sylan 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
285278, 284syldan 487 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ ω)
2861, 2, 3, 4, 10, 11cantnfsuc 8567 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)))
287285, 286syldan 487 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐻‘suc 𝑦) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)))
2881, 2, 3, 233, 5, 245cantnfsuc 8567 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ω) → (𝑀‘suc 𝑦) = (((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) +𝑜 (𝑀𝑦)))
289285, 288syldan 487 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) +𝑜 (𝑀𝑦)))
290239simprd 479 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑂 dom 𝑂) = 𝐾)
291290fveq1d 6193 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
292291adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝐾𝑦))
29314eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
294293biimpa 501 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → suc 𝑦 ∈ suc dom 𝑂)
295152adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → Ord dom 𝑂)
296 ordsucelsuc 7022 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord dom 𝑂 → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
297295, 296syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑦 dom 𝑂 ↔ suc 𝑦 ∈ suc dom 𝑂))
298294, 297mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 dom 𝑂)
299 fvres 6207 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 dom 𝑂 → ((𝑂 dom 𝑂)‘𝑦) = (𝑂𝑦))
300298, 299syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝑂 dom 𝑂)‘𝑦) = (𝑂𝑦))
301292, 300eqtr3d 2658 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) = (𝑂𝑦))
302301oveq2d 6666 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐴𝑜 (𝐾𝑦)) = (𝐴𝑜 (𝑂𝑦)))
303 suppssdm 7308 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 supp ∅) ⊆ dom 𝐺
304 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺:𝐵𝐴 → dom 𝐺 = 𝐵)
30527, 304syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐺 = 𝐵)
306303, 305syl5sseq 3653 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐺 supp ∅) ⊆ 𝐵)
307306adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺 supp ∅) ⊆ 𝐵)
308240adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → dom 𝑂 = dom 𝐾)
309298, 308eleqtrd 2703 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑦 ∈ dom 𝐾)
310233oif 8435 . . . . . . . . . . . . . . . . . . . . . . 23 𝐾:dom 𝐾⟶(𝐺 supp ∅)
311310ffvelrni 6358 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ dom 𝐾 → (𝐾𝑦) ∈ (𝐺 supp ∅))
312309, 311syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ (𝐺 supp ∅))
313307, 312sseldd 3604 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐾𝑦) ∈ 𝐵)
3147adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → 𝑌𝐴)
315 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21 (𝐺‘(𝐾𝑦)) ∈ V
316 ifexg 4157 . . . . . . . . . . . . . . . . . . . . 21 ((𝑌𝐴 ∧ (𝐺‘(𝐾𝑦)) ∈ V) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
317314, 315, 316sylancl 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V)
318 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = (𝐾𝑦) → (𝑡 = 𝑋 ↔ (𝐾𝑦) = 𝑋))
319 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = (𝐾𝑦) → (𝐺𝑡) = (𝐺‘(𝐾𝑦)))
320318, 319ifbieq2d 4111 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐾𝑦) → if(𝑡 = 𝑋, 𝑌, (𝐺𝑡)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
321320, 9fvmptg 6280 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝑦) ∈ 𝐵 ∧ if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) ∈ V) → (𝐹‘(𝐾𝑦)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
322313, 317, 321syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))))
323301fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐹‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
324184adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ 𝑋 ∈ (𝐺 supp ∅))
325 nelneq 2725 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝑦) ∈ (𝐺 supp ∅) ∧ ¬ 𝑋 ∈ (𝐺 supp ∅)) → ¬ (𝐾𝑦) = 𝑋)
326312, 324, 325syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ¬ (𝐾𝑦) = 𝑋)
327326iffalsed 4097 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → if((𝐾𝑦) = 𝑋, 𝑌, (𝐺‘(𝐾𝑦))) = (𝐺‘(𝐾𝑦)))
328322, 323, 3273eqtr3rd 2665 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝐺‘(𝐾𝑦)) = (𝐹‘(𝑂𝑦)))
329302, 328oveq12d 6668 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) = ((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))))
330329oveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (((𝐴𝑜 (𝐾𝑦)) ·𝑜 (𝐺‘(𝐾𝑦))) +𝑜 (𝑀𝑦)) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦)))
331289, 330eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → (𝑀‘suc 𝑦) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦)))
332287, 331eqeq12d 2637 . . . . . . . . . . . . . 14 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻‘suc 𝑦) = (𝑀‘suc 𝑦) ↔ (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝐻𝑦)) = (((𝐴𝑜 (𝑂𝑦)) ·𝑜 (𝐹‘(𝑂𝑦))) +𝑜 (𝑀𝑦))))
333281, 332syl5ibr 236 . . . . . . . . . . . . 13 ((𝜑 ∧ suc 𝑦 ∈ dom 𝑂) → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))
334333ex 450 . . . . . . . . . . . 12 (𝜑 → (suc 𝑦 ∈ dom 𝑂 → ((𝐻𝑦) = (𝑀𝑦) → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
335334a2d 29 . . . . . . . . . . 11 (𝜑 → ((suc 𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
336280, 335syld 47 . . . . . . . . . 10 (𝜑 → ((𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦)) → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
337336a2i 14 . . . . . . . . 9 ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦))))
338337a1i 11 . . . . . . . 8 (𝑦 ∈ ω → ((𝜑 → (𝑦 ∈ dom 𝑂 → (𝐻𝑦) = (𝑀𝑦))) → (𝜑 → (suc 𝑦 ∈ dom 𝑂 → (𝐻‘suc 𝑦) = (𝑀‘suc 𝑦)))))
339251, 257, 263, 269, 272, 338finds 7092 . . . . . . 7 ( dom 𝑂 ∈ ω → (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))))
34020, 339mpcom 38 . . . . . 6 (𝜑 → ( dom 𝑂 ∈ dom 𝑂 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂)))
34172, 340mpd 15 . . . . 5 (𝜑 → (𝐻 dom 𝑂) = (𝑀 dom 𝑂))
3421, 2, 3, 233, 5, 245cantnfval 8565 . . . . 5 (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝑀‘dom 𝐾))
343241, 341, 3423eqtr4d 2666 . . . 4 (𝜑 → (𝐻 dom 𝑂) = ((𝐴 CNF 𝐵)‘𝐺))
344150, 343oveq12d 6668 . . 3 (𝜑 → (((𝐴𝑜 (𝑂 dom 𝑂)) ·𝑜 (𝐹‘(𝑂 dom 𝑂))) +𝑜 (𝐻 dom 𝑂)) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
34522, 344eqtrd 2656 . 2 (𝜑 → (𝐻‘suc dom 𝑂) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
34612, 15, 3453eqtrd 2660 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴𝑜 𝑋) ·𝑜 𝑌) +𝑜 ((𝐴 CNF 𝐵)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  Tr wtr 4752   E cep 5028   Se wse 5071   We wwe 5072  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  Ord word 5722  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  cmpt2 6652  ωcom 7065   supp csupp 7295  seq𝜔cseqom 7542  1𝑜c1o 7553   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnfp1  8578
  Copyright terms: Public domain W3C validator