MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem1 Structured version   Visualization version   GIF version

Theorem hsmexlem1 9248
Description: Lemma for hsmex 9254. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
hsmexlem.o 𝑂 = OrdIso( E , 𝐴)
Assertion
Ref Expression
hsmexlem1 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))

Proof of Theorem hsmexlem1
StepHypRef Expression
1 hsmexlem.o . . . 4 𝑂 = OrdIso( E , 𝐴)
21oicl 8434 . . 3 Ord dom 𝑂
3 relwdom 8471 . . . . . . . 8 Rel ≼*
43brrelexi 5158 . . . . . . 7 (𝐴* 𝐵𝐴 ∈ V)
54adantl 482 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ∈ V)
6 uniexg 6955 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
7 sucexg 7010 . . . . . 6 ( 𝐴 ∈ V → suc 𝐴 ∈ V)
85, 6, 73syl 18 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → suc 𝐴 ∈ V)
91oif 8435 . . . . . . 7 𝑂:dom 𝑂𝐴
10 onsucuni 7028 . . . . . . . 8 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
1110adantr 481 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ⊆ suc 𝐴)
12 fss 6056 . . . . . . 7 ((𝑂:dom 𝑂𝐴𝐴 ⊆ suc 𝐴) → 𝑂:dom 𝑂⟶suc 𝐴)
139, 11, 12sylancr 695 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂⟶suc 𝐴)
141oismo 8445 . . . . . . . 8 (𝐴 ⊆ On → (Smo 𝑂 ∧ ran 𝑂 = 𝐴))
1514adantr 481 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (Smo 𝑂 ∧ ran 𝑂 = 𝐴))
1615simpld 475 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Smo 𝑂)
17 ssorduni 6985 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
1817adantr 481 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Ord 𝐴)
19 ordsuc 7014 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
2018, 19sylib 208 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Ord suc 𝐴)
21 smorndom 7465 . . . . . 6 ((𝑂:dom 𝑂⟶suc 𝐴 ∧ Smo 𝑂 ∧ Ord suc 𝐴) → dom 𝑂 ⊆ suc 𝐴)
2213, 16, 20, 21syl3anc 1326 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ⊆ suc 𝐴)
238, 22ssexd 4805 . . . 4 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ V)
24 elong 5731 . . . 4 (dom 𝑂 ∈ V → (dom 𝑂 ∈ On ↔ Ord dom 𝑂))
2523, 24syl 17 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (dom 𝑂 ∈ On ↔ Ord dom 𝑂))
262, 25mpbiri 248 . 2 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ On)
27 canth2g 8114 . . . 4 (dom 𝑂 ∈ V → dom 𝑂 ≺ 𝒫 dom 𝑂)
28 sdomdom 7983 . . . 4 (dom 𝑂 ≺ 𝒫 dom 𝑂 → dom 𝑂 ≼ 𝒫 dom 𝑂)
2923, 27, 283syl 18 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ≼ 𝒫 dom 𝑂)
30 simpl 473 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ⊆ On)
31 epweon 6983 . . . . . . . . . . 11 E We On
32 wess 5101 . . . . . . . . . . 11 (𝐴 ⊆ On → ( E We On → E We 𝐴))
3330, 31, 32mpisyl 21 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → E We 𝐴)
34 epse 5097 . . . . . . . . . 10 E Se 𝐴
351oiiso2 8436 . . . . . . . . . 10 (( E We 𝐴 ∧ E Se 𝐴) → 𝑂 Isom E , E (dom 𝑂, ran 𝑂))
3633, 34, 35sylancl 694 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂 Isom E , E (dom 𝑂, ran 𝑂))
37 isof1o 6573 . . . . . . . . 9 (𝑂 Isom E , E (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
3836, 37syl 17 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
3915simprd 479 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → ran 𝑂 = 𝐴)
40 f1oeq3 6129 . . . . . . . . 9 (ran 𝑂 = 𝐴 → (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1-onto𝐴))
4139, 40syl 17 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1-onto𝐴))
4238, 41mpbid 222 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂1-1-onto𝐴)
43 f1oen2g 7972 . . . . . . 7 ((dom 𝑂 ∈ On ∧ 𝐴 ∈ V ∧ 𝑂:dom 𝑂1-1-onto𝐴) → dom 𝑂𝐴)
4426, 5, 42, 43syl3anc 1326 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂𝐴)
45 endom 7982 . . . . . 6 (dom 𝑂𝐴 → dom 𝑂𝐴)
46 domwdom 8479 . . . . . 6 (dom 𝑂𝐴 → dom 𝑂* 𝐴)
4744, 45, 463syl 18 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂* 𝐴)
48 wdomtr 8480 . . . . 5 ((dom 𝑂* 𝐴𝐴* 𝐵) → dom 𝑂* 𝐵)
4947, 48sylancom 701 . . . 4 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂* 𝐵)
50 wdompwdom 8483 . . . 4 (dom 𝑂* 𝐵 → 𝒫 dom 𝑂 ≼ 𝒫 𝐵)
5149, 50syl 17 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝒫 dom 𝑂 ≼ 𝒫 𝐵)
52 domtr 8009 . . 3 ((dom 𝑂 ≼ 𝒫 dom 𝑂 ∧ 𝒫 dom 𝑂 ≼ 𝒫 𝐵) → dom 𝑂 ≼ 𝒫 𝐵)
5329, 51, 52syl2anc 693 . 2 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ≼ 𝒫 𝐵)
54 elharval 8468 . 2 (dom 𝑂 ∈ (har‘𝒫 𝐵) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐵))
5526, 53, 54sylanbrc 698 1 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653   E cep 5028   Se wse 5071   We wwe 5072  dom cdm 5114  ran crn 5115  Ord word 5722  Oncon0 5723  suc csuc 5725  wf 5884  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  Smo wsmo 7442  cen 7952  cdom 7953  csdm 7954  OrdIsocoi 8414  harchar 8461  * cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-smo 7443  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464
This theorem is referenced by:  hsmexlem2  9249  hsmexlem4  9251
  Copyright terms: Public domain W3C validator