MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epweon Structured version   Visualization version   GIF version

Theorem epweon 6983
Description: The epsilon relation well-orders the class of ordinal numbers. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
epweon E We On

Proof of Theorem epweon
StepHypRef Expression
1 ordon 6982 . 2 Ord On
2 ordwe 5736 . 2 (Ord On → E We On)
31, 2ax-mp 5 1 E We On
Colors of variables: wff setvar class
Syntax hints:   E cep 5028   We wwe 5072  Ord word 5722  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  omsinds  7084  onnseq  7441  dfrecs3  7469  tfr1ALT  7496  tfr2ALT  7497  tfr3ALT  7498  ordunifi  8210  ordtypelem8  8430  oismo  8445  cantnfcl  8564  leweon  8834  r0weon  8835  ac10ct  8857  dfac12lem2  8966  cflim2  9085  cofsmo  9091  hsmexlem1  9248  smobeth  9408  gruina  9640  ltsopi  9710  dford5  31608  finminlem  32312  dnwech  37618  aomclem4  37627
  Copyright terms: Public domain W3C validator