| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnfcl | Structured version Visualization version GIF version | ||
| Description: Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| cantnfcl.g | ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| cantnfcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| cantnfcl | ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssdm 7308 | . . . . 5 ⊢ (𝐹 supp ∅) ⊆ dom 𝐹 | |
| 2 | cantnfcl.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑆) | |
| 3 | cantnfs.s | . . . . . . . . 9 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 4 | cantnfs.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 5 | cantnfs.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 6 | 3, 4, 5 | cantnfs 8563 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 7 | 2, 6 | mpbid 222 | . . . . . . 7 ⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
| 8 | 7 | simpld 475 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 9 | fdm 6051 | . . . . . 6 ⊢ (𝐹:𝐵⟶𝐴 → dom 𝐹 = 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐵) |
| 11 | 1, 10 | syl5sseq 3653 | . . . 4 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
| 12 | onss 6990 | . . . . 5 ⊢ (𝐵 ∈ On → 𝐵 ⊆ On) | |
| 13 | 5, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ On) |
| 14 | 11, 13 | sstrd 3613 | . . 3 ⊢ (𝜑 → (𝐹 supp ∅) ⊆ On) |
| 15 | epweon 6983 | . . 3 ⊢ E We On | |
| 16 | wess 5101 | . . 3 ⊢ ((𝐹 supp ∅) ⊆ On → ( E We On → E We (𝐹 supp ∅))) | |
| 17 | 14, 15, 16 | mpisyl 21 | . 2 ⊢ (𝜑 → E We (𝐹 supp ∅)) |
| 18 | ovexd 6680 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ V) | |
| 19 | cantnfcl.g | . . . . . 6 ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | |
| 20 | 19 | oion 8441 | . . . . 5 ⊢ ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On) |
| 21 | 18, 20 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ On) |
| 22 | 7 | simprd 479 | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp ∅) |
| 23 | 22 | fsuppimpd 8282 | . . . . 5 ⊢ (𝜑 → (𝐹 supp ∅) ∈ Fin) |
| 24 | 19 | oien 8443 | . . . . . 6 ⊢ (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 25 | 18, 17, 24 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅)) |
| 26 | enfii 8177 | . . . . 5 ⊢ (((𝐹 supp ∅) ∈ Fin ∧ dom 𝐺 ≈ (𝐹 supp ∅)) → dom 𝐺 ∈ Fin) | |
| 27 | 23, 25, 26 | syl2anc 693 | . . . 4 ⊢ (𝜑 → dom 𝐺 ∈ Fin) |
| 28 | 21, 27 | elind 3798 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ (On ∩ Fin)) |
| 29 | onfin2 8152 | . . 3 ⊢ ω = (On ∩ Fin) | |
| 30 | 28, 29 | syl6eleqr 2712 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ ω) |
| 31 | 17, 30 | jca 554 | 1 ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 class class class wbr 4653 E cep 5028 We wwe 5072 dom cdm 5114 Oncon0 5723 ⟶wf 5884 (class class class)co 6650 ωcom 7065 supp csupp 7295 ≈ cen 7952 Fincfn 7955 finSupp cfsupp 8275 OrdIsocoi 8414 CNF ccnf 8558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-cnf 8559 |
| This theorem is referenced by: cantnfval2 8566 cantnfle 8568 cantnflt 8569 cantnflt2 8570 cantnff 8571 cantnfp1lem2 8576 cantnfp1lem3 8577 cantnflem1b 8583 cantnflem1d 8585 cantnflem1 8586 cnfcomlem 8596 cnfcom 8597 cnfcom2lem 8598 cnfcom3lem 8600 |
| Copyright terms: Public domain | W3C validator |