MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Structured version   Visualization version   Unicode version

Theorem erinxp 7821
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r  |-  ( ph  ->  R  Er  A )
erinxp.a  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
erinxp  |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )

Proof of Theorem erinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . . 4  |-  ( R  i^i  ( B  X.  B ) )  C_  ( B  X.  B
)
2 relxp 5227 . . . 4  |-  Rel  ( B  X.  B )
3 relss 5206 . . . 4  |-  ( ( R  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )  ->  ( Rel  ( B  X.  B
)  ->  Rel  ( R  i^i  ( B  X.  B ) ) ) )
41, 2, 3mp2 9 . . 3  |-  Rel  ( R  i^i  ( B  X.  B ) )
54a1i 11 . 2  |-  ( ph  ->  Rel  ( R  i^i  ( B  X.  B
) ) )
6 simpr 477 . . . . 5  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x ( R  i^i  ( B  X.  B ) ) y )
7 brinxp2 5180 . . . . 5  |-  ( x ( R  i^i  ( B  X.  B ) ) y  <->  ( x  e.  B  /\  y  e.  B  /\  x R y ) )
86, 7sylib 208 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  ( x  e.  B  /\  y  e.  B  /\  x R y ) )
98simp2d 1074 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y  e.  B )
108simp1d 1073 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x  e.  B )
11 erinxp.r . . . . 5  |-  ( ph  ->  R  Er  A )
1211adantr 481 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  R  Er  A )
138simp3d 1075 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x R
y )
1412, 13ersym 7754 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y R x )
15 brinxp2 5180 . . 3  |-  ( y ( R  i^i  ( B  X.  B ) ) x  <->  ( y  e.  B  /\  x  e.  B  /\  y R x ) )
169, 10, 14, 15syl3anbrc 1246 . 2  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y ( R  i^i  ( B  X.  B ) ) x )
1710adantrr 753 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x  e.  B )
18 simprr 796 . . . . 5  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
y ( R  i^i  ( B  X.  B
) ) z )
19 brinxp2 5180 . . . . 5  |-  ( y ( R  i^i  ( B  X.  B ) ) z  <->  ( y  e.  B  /\  z  e.  B  /\  y R z ) )
2018, 19sylib 208 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
( y  e.  B  /\  z  e.  B  /\  y R z ) )
2120simp2d 1074 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
z  e.  B )
2211adantr 481 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  R  Er  A )
2313adantrr 753 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x R y )
2420simp3d 1075 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
y R z )
2522, 23, 24ertrd 7758 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x R z )
26 brinxp2 5180 . . 3  |-  ( x ( R  i^i  ( B  X.  B ) ) z  <->  ( x  e.  B  /\  z  e.  B  /\  x R z ) )
2717, 21, 25, 26syl3anbrc 1246 . 2  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x ( R  i^i  ( B  X.  B
) ) z )
2811adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  R  Er  A )
29 erinxp.a . . . . . . 7  |-  ( ph  ->  B  C_  A )
3029sselda 3603 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
3128, 30erref 7762 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  x R x )
3231ex 450 . . . 4  |-  ( ph  ->  ( x  e.  B  ->  x R x ) )
3332pm4.71rd 667 . . 3  |-  ( ph  ->  ( x  e.  B  <->  ( x R x  /\  x  e.  B )
) )
34 brin 4704 . . . 4  |-  ( x ( R  i^i  ( B  X.  B ) ) x  <->  ( x R x  /\  x ( B  X.  B ) x ) )
35 brxp 5147 . . . . . 6  |-  ( x ( B  X.  B
) x  <->  ( x  e.  B  /\  x  e.  B ) )
36 anidm 676 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  B )  <->  x  e.  B )
3735, 36bitri 264 . . . . 5  |-  ( x ( B  X.  B
) x  <->  x  e.  B )
3837anbi2i 730 . . . 4  |-  ( ( x R x  /\  x ( B  X.  B ) x )  <-> 
( x R x  /\  x  e.  B
) )
3934, 38bitri 264 . . 3  |-  ( x ( R  i^i  ( B  X.  B ) ) x  <->  ( x R x  /\  x  e.  B ) )
4033, 39syl6bbr 278 . 2  |-  ( ph  ->  ( x  e.  B  <->  x ( R  i^i  ( B  X.  B ) ) x ) )
415, 16, 27, 40iserd 7768 1  |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   Rel wrel 5119    Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-er 7742
This theorem is referenced by:  frgpuplem  18185  pi1buni  22840  pi1addf  22847  pi1addval  22848  pi1grplem  22849
  Copyright terms: Public domain W3C validator