MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfpf1 Structured version   Visualization version   GIF version

Theorem mpfpf1 19715
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1𝑜 eval 𝑅)
Assertion
Ref Expression
mpfpf1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐸   𝑦,𝐹   𝑦,𝑅
Allowed substitution hint:   𝑄(𝑦)

Proof of Theorem mpfpf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mpfpf1.q . . . . 5 𝐸 = ran (1𝑜 eval 𝑅)
2 eqid 2622 . . . . . . 7 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
3 pf1f.b . . . . . . 7 𝐵 = (Base‘𝑅)
42, 3evlval 19524 . . . . . 6 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘𝐵)
54rneqi 5352 . . . . 5 ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘𝐵)
61, 5eqtri 2644 . . . 4 𝐸 = ran ((1𝑜 evalSub 𝑅)‘𝐵)
76mpfrcl 19518 . . 3 (𝐹𝐸 → (1𝑜 ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)))
87simp2d 1074 . 2 (𝐹𝐸𝑅 ∈ CRing)
9 id 22 . . . 4 (𝐹𝐸𝐹𝐸)
109, 1syl6eleq 2711 . . 3 (𝐹𝐸𝐹 ∈ ran (1𝑜 eval 𝑅))
11 1on 7567 . . . . 5 1𝑜 ∈ On
12 eqid 2622 . . . . . 6 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
13 eqid 2622 . . . . . 6 (𝑅s (𝐵𝑚 1𝑜)) = (𝑅s (𝐵𝑚 1𝑜))
142, 3, 12, 13evlrhm 19525 . . . . 5 ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
1511, 8, 14sylancr 695 . . . 4 (𝐹𝐸 → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
16 eqid 2622 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
17 eqid 2622 . . . . . 6 (PwSer1𝑅) = (PwSer1𝑅)
18 eqid 2622 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1916, 17, 18ply1bas 19565 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(1𝑜 mPoly 𝑅))
20 eqid 2622 . . . . 5 (Base‘(𝑅s (𝐵𝑚 1𝑜))) = (Base‘(𝑅s (𝐵𝑚 1𝑜)))
2119, 20rhmf 18726 . . . 4 ((1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))))
22 ffn 6045 . . . 4 ((1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)))
23 fvelrnb 6243 . . . 4 ((1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (1𝑜 eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹))
2415, 21, 22, 234syl 19 . . 3 (𝐹𝐸 → (𝐹 ∈ ran (1𝑜 eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹))
2510, 24mpbid 222 . 2 (𝐹𝐸 → ∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹)
26 eqid 2622 . . . . . 6 (eval1𝑅) = (eval1𝑅)
2726, 2, 3, 12, 19evl1val 19693 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) = (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
28 eqid 2622 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
2926, 16, 28, 3evl1rhm 19696 . . . . . . . 8 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
30 eqid 2622 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
3118, 30rhmf 18726 . . . . . . . 8 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
32 ffn 6045 . . . . . . . 8 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
3329, 31, 323syl 18 . . . . . . 7 (𝑅 ∈ CRing → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
34 fnfvelrn 6356 . . . . . . 7 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
3533, 34sylan 488 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
36 pf1rcl.q . . . . . 6 𝑄 = ran (eval1𝑅)
3735, 36syl6eleqr 2712 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ 𝑄)
3827, 37eqeltrrd 2702 . . . 4 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)
39 coeq1 5279 . . . . 5 (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) = (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
4039eleq1d 2686 . . . 4 (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → ((((1𝑜 eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄))
4138, 40syl5ibcom 235 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄))
4241rexlimdva 3031 . 2 (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1𝑅))((1𝑜 eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄))
438, 25, 42sylc 65 1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  {csn 4177  cmpt 4729   × cxp 5112  ran crn 5115  ccom 5118  Oncon0 5723   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857  s cpws 16107  CRingccrg 18548   RingHom crh 18712  SubRingcsubrg 18776   mPoly cmpl 19353   evalSub ces 19504   eval cevl 19505  PwSer1cps1 19545  Poly1cpl1 19547  eval1ce1 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-ply1 19552  df-evl1 19681
This theorem is referenced by:  pf1ind  19719
  Copyright terms: Public domain W3C validator