MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlval Structured version   Visualization version   Unicode version

Theorem evlval 19524
Description: Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evlval.q  |-  Q  =  ( I eval  R )
evlval.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
evlval  |-  Q  =  ( ( I evalSub  R
) `  B )

Proof of Theorem evlval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlval.q . 2  |-  Q  =  ( I eval  R )
2 oveq12 6659 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i evalSub  r )  =  ( I evalSub  R
) )
3 fveq2 6191 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
4 evlval.b . . . . . . 7  |-  B  =  ( Base `  R
)
53, 4syl6eqr 2674 . . . . . 6  |-  ( r  =  R  ->  ( Base `  r )  =  B )
65adantl 482 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( Base `  r
)  =  B )
72, 6fveq12d 6197 . . . 4  |-  ( ( i  =  I  /\  r  =  R )  ->  ( ( i evalSub  r
) `  ( Base `  r ) )  =  ( ( I evalSub  R
) `  B )
)
8 df-evl 19507 . . . 4  |- eval  =  ( i  e.  _V , 
r  e.  _V  |->  ( ( i evalSub  r ) `
 ( Base `  r
) ) )
9 fvex 6201 . . . 4  |-  ( ( I evalSub  R ) `  B
)  e.  _V
107, 8, 9ovmpt2a 6791 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( I eval  R )  =  ( ( I evalSub  R ) `  B
) )
118mpt2ndm0 6875 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I eval  R )  =  (/) )
12 0fv 6227 . . . . 5  |-  ( (/) `  B )  =  (/)
1311, 12syl6eqr 2674 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I eval  R )  =  ( (/) `  B
) )
14 reldmevls 19517 . . . . . 6  |-  Rel  dom evalSub
1514ovprc 6683 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I evalSub  R )  =  (/) )
1615fveq1d 6193 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( ( I evalSub  R
) `  B )  =  ( (/) `  B
) )
1713, 16eqtr4d 2659 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I eval  R )  =  ( ( I evalSub  R ) `  B
) )
1810, 17pm2.61i 176 . 2  |-  ( I eval 
R )  =  ( ( I evalSub  R ) `
 B )
191, 18eqtri 2644 1  |-  Q  =  ( ( I evalSub  R
) `  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   evalSub ces 19504   eval cevl 19505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-evls 19506  df-evl 19507
This theorem is referenced by:  evlrhm  19525  evlsscasrng  19526  evlsvarsrng  19528  evl1fval1lem  19694  evl1sca  19698  evl1var  19700  pf1rcl  19713  mpfpf1  19715  pf1ind  19719  mzpmfp  37310
  Copyright terms: Public domain W3C validator