MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   GIF version

Theorem pf1rcl 19713
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
Assertion
Ref Expression
pf1rcl (𝑋𝑄𝑅 ∈ CRing)

Proof of Theorem pf1rcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3920 . 2 (𝑋𝑄 → ¬ 𝑄 = ∅)
2 pf1rcl.q . . . 4 𝑄 = ran (eval1𝑅)
3 eqid 2622 . . . . . 6 (eval1𝑅) = (eval1𝑅)
4 eqid 2622 . . . . . 6 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
5 eqid 2622 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5evl1fval 19692 . . . . 5 (eval1𝑅) = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
76rneqi 5352 . . . 4 ran (eval1𝑅) = ran ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅))
8 rnco2 5642 . . . 4 ran ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)) = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅))
92, 7, 83eqtri 2648 . . 3 𝑄 = ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅))
10 inss2 3834 . . . . 5 (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) ⊆ ran (1𝑜 eval 𝑅)
11 neq0 3930 . . . . . . 7 (¬ ran (1𝑜 eval 𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ran (1𝑜 eval 𝑅))
124, 5evlval 19524 . . . . . . . . . . 11 (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘(Base‘𝑅))
1312rneqi 5352 . . . . . . . . . 10 ran (1𝑜 eval 𝑅) = ran ((1𝑜 evalSub 𝑅)‘(Base‘𝑅))
1413mpfrcl 19518 . . . . . . . . 9 (𝑥 ∈ ran (1𝑜 eval 𝑅) → (1𝑜 ∈ V ∧ 𝑅 ∈ CRing ∧ (Base‘𝑅) ∈ (SubRing‘𝑅)))
1514simp2d 1074 . . . . . . . 8 (𝑥 ∈ ran (1𝑜 eval 𝑅) → 𝑅 ∈ CRing)
1615exlimiv 1858 . . . . . . 7 (∃𝑥 𝑥 ∈ ran (1𝑜 eval 𝑅) → 𝑅 ∈ CRing)
1711, 16sylbi 207 . . . . . 6 (¬ ran (1𝑜 eval 𝑅) = ∅ → 𝑅 ∈ CRing)
1817con1i 144 . . . . 5 𝑅 ∈ CRing → ran (1𝑜 eval 𝑅) = ∅)
19 sseq0 3975 . . . . 5 (((dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) ⊆ ran (1𝑜 eval 𝑅) ∧ ran (1𝑜 eval 𝑅) = ∅) → (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
2010, 18, 19sylancr 695 . . . 4 𝑅 ∈ CRing → (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
21 imadisj 5484 . . . 4 (((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅)) = ∅ ↔ (dom (𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) ∩ ran (1𝑜 eval 𝑅)) = ∅)
2220, 21sylibr 224 . . 3 𝑅 ∈ CRing → ((𝑥 ∈ ((Base‘𝑅) ↑𝑚 ((Base‘𝑅) ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ (Base‘𝑅) ↦ (1𝑜 × {𝑦})))) “ ran (1𝑜 eval 𝑅)) = ∅)
239, 22syl5eq 2668 . 2 𝑅 ∈ CRing → 𝑄 = ∅)
241, 23nsyl2 142 1 (𝑋𝑄𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cin 3573  wss 3574  c0 3915  {csn 4177  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857  CRingccrg 18548  SubRingcsubrg 18776   evalSub ces 19504   eval cevl 19505  eval1ce1 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-evls 19506  df-evl 19507  df-evl1 19681
This theorem is referenced by:  pf1f  19714  pf1mpf  19716  pf1addcl  19717  pf1mulcl  19718  pf1ind  19719
  Copyright terms: Public domain W3C validator