MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f12dfv Structured version   Visualization version   GIF version

Theorem f12dfv 6529
Description: A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
Hypothesis
Ref Expression
f12dfv.a 𝐴 = {𝑋, 𝑌}
Assertion
Ref Expression
f12dfv (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))

Proof of Theorem f12dfv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff14b 6528 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
2 f12dfv.a . . . . 5 𝐴 = {𝑋, 𝑌}
32raleqi 3142 . . . 4 (∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ ∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
4 sneq 4187 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
54difeq2d 3728 . . . . . . . 8 (𝑥 = 𝑋 → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {𝑋}))
6 fveq2 6191 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
76neeq1d 2853 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑦)))
85, 7raleqbidv 3152 . . . . . . 7 (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦)))
9 sneq 4187 . . . . . . . . 9 (𝑥 = 𝑌 → {𝑥} = {𝑌})
109difeq2d 3728 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {𝑌}))
11 fveq2 6191 . . . . . . . . 9 (𝑥 = 𝑌 → (𝐹𝑥) = (𝐹𝑌))
1211neeq1d 2853 . . . . . . . 8 (𝑥 = 𝑌 → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑦)))
1310, 12raleqbidv 3152 . . . . . . 7 (𝑥 = 𝑌 → (∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦)))
148, 13ralprg 4234 . . . . . 6 ((𝑋𝑈𝑌𝑉) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦))))
1514adantr 481 . . . . 5 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦))))
162difeq1i 3724 . . . . . . . . . . 11 (𝐴 ∖ {𝑋}) = ({𝑋, 𝑌} ∖ {𝑋})
17 difprsn1 4330 . . . . . . . . . . 11 (𝑋𝑌 → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
1816, 17syl5eq 2668 . . . . . . . . . 10 (𝑋𝑌 → (𝐴 ∖ {𝑋}) = {𝑌})
1918adantl 482 . . . . . . . . 9 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐴 ∖ {𝑋}) = {𝑌})
2019raleqdv 3144 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦)))
21 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221neeq2d 2854 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2322ralsng 4218 . . . . . . . . . 10 (𝑌𝑉 → (∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2423adantl 482 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉) → (∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2524adantr 481 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2620, 25bitrd 268 . . . . . . 7 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
272difeq1i 3724 . . . . . . . . . . 11 (𝐴 ∖ {𝑌}) = ({𝑋, 𝑌} ∖ {𝑌})
28 difprsn2 4331 . . . . . . . . . . 11 (𝑋𝑌 → ({𝑋, 𝑌} ∖ {𝑌}) = {𝑋})
2927, 28syl5eq 2668 . . . . . . . . . 10 (𝑋𝑌 → (𝐴 ∖ {𝑌}) = {𝑋})
3029adantl 482 . . . . . . . . 9 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐴 ∖ {𝑌}) = {𝑋})
3130raleqdv 3144 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦)))
32 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
3332neeq2d 2854 . . . . . . . . . . 11 (𝑦 = 𝑋 → ((𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3433ralsng 4218 . . . . . . . . . 10 (𝑋𝑈 → (∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3534adantr 481 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉) → (∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3635adantr 481 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3731, 36bitrd 268 . . . . . . 7 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3826, 37anbi12d 747 . . . . . 6 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → ((∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦)) ↔ ((𝐹𝑋) ≠ (𝐹𝑌) ∧ (𝐹𝑌) ≠ (𝐹𝑋))))
39 necom 2847 . . . . . . . 8 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ (𝐹𝑌) ≠ (𝐹𝑋))
4039biimpi 206 . . . . . . 7 ((𝐹𝑋) ≠ (𝐹𝑌) → (𝐹𝑌) ≠ (𝐹𝑋))
4140pm4.71i 664 . . . . . 6 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ ((𝐹𝑋) ≠ (𝐹𝑌) ∧ (𝐹𝑌) ≠ (𝐹𝑋)))
4238, 41syl6bbr 278 . . . . 5 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → ((∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦)) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
4315, 42bitrd 268 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
443, 43syl5bb 272 . . 3 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
4544anbi2d 740 . 2 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)) ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
461, 45syl5bb 272 1 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  cdif 3571  {csn 4177  {cpr 4179  wf 5884  1-1wf1 5885  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896
This theorem is referenced by:  usgr2trlncl  26656
  Copyright terms: Public domain W3C validator