| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f12dfv | Structured version Visualization version Unicode version | ||
| Description: A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
| Ref | Expression |
|---|---|
| f12dfv.a |
|
| Ref | Expression |
|---|---|
| f12dfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff14b 6528 |
. 2
| |
| 2 | f12dfv.a |
. . . . 5
| |
| 3 | 2 | raleqi 3142 |
. . . 4
|
| 4 | sneq 4187 |
. . . . . . . . 9
| |
| 5 | 4 | difeq2d 3728 |
. . . . . . . 8
|
| 6 | fveq2 6191 |
. . . . . . . . 9
| |
| 7 | 6 | neeq1d 2853 |
. . . . . . . 8
|
| 8 | 5, 7 | raleqbidv 3152 |
. . . . . . 7
|
| 9 | sneq 4187 |
. . . . . . . . 9
| |
| 10 | 9 | difeq2d 3728 |
. . . . . . . 8
|
| 11 | fveq2 6191 |
. . . . . . . . 9
| |
| 12 | 11 | neeq1d 2853 |
. . . . . . . 8
|
| 13 | 10, 12 | raleqbidv 3152 |
. . . . . . 7
|
| 14 | 8, 13 | ralprg 4234 |
. . . . . 6
|
| 15 | 14 | adantr 481 |
. . . . 5
|
| 16 | 2 | difeq1i 3724 |
. . . . . . . . . . 11
|
| 17 | difprsn1 4330 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | syl5eq 2668 |
. . . . . . . . . 10
|
| 19 | 18 | adantl 482 |
. . . . . . . . 9
|
| 20 | 19 | raleqdv 3144 |
. . . . . . . 8
|
| 21 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 22 | 21 | neeq2d 2854 |
. . . . . . . . . . 11
|
| 23 | 22 | ralsng 4218 |
. . . . . . . . . 10
|
| 24 | 23 | adantl 482 |
. . . . . . . . 9
|
| 25 | 24 | adantr 481 |
. . . . . . . 8
|
| 26 | 20, 25 | bitrd 268 |
. . . . . . 7
|
| 27 | 2 | difeq1i 3724 |
. . . . . . . . . . 11
|
| 28 | difprsn2 4331 |
. . . . . . . . . . 11
| |
| 29 | 27, 28 | syl5eq 2668 |
. . . . . . . . . 10
|
| 30 | 29 | adantl 482 |
. . . . . . . . 9
|
| 31 | 30 | raleqdv 3144 |
. . . . . . . 8
|
| 32 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 33 | 32 | neeq2d 2854 |
. . . . . . . . . . 11
|
| 34 | 33 | ralsng 4218 |
. . . . . . . . . 10
|
| 35 | 34 | adantr 481 |
. . . . . . . . 9
|
| 36 | 35 | adantr 481 |
. . . . . . . 8
|
| 37 | 31, 36 | bitrd 268 |
. . . . . . 7
|
| 38 | 26, 37 | anbi12d 747 |
. . . . . 6
|
| 39 | necom 2847 |
. . . . . . . 8
| |
| 40 | 39 | biimpi 206 |
. . . . . . 7
|
| 41 | 40 | pm4.71i 664 |
. . . . . 6
|
| 42 | 38, 41 | syl6bbr 278 |
. . . . 5
|
| 43 | 15, 42 | bitrd 268 |
. . . 4
|
| 44 | 3, 43 | syl5bb 272 |
. . 3
|
| 45 | 44 | anbi2d 740 |
. 2
|
| 46 | 1, 45 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fv 5896 |
| This theorem is referenced by: usgr2trlncl 26656 |
| Copyright terms: Public domain | W3C validator |