MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1lindf Structured version   Visualization version   GIF version

Theorem f1lindf 20161
Description: Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
f1lindf ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)

Proof of Theorem f1lindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
21lindff 20154 . . . . . 6 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 469 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
433adant3 1081 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊))
5 f1f 6101 . . . . 5 (𝐺:𝐾1-1→dom 𝐹𝐺:𝐾⟶dom 𝐹)
653ad2ant3 1084 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾⟶dom 𝐹)
7 fco 6058 . . . 4 ((𝐹:dom 𝐹⟶(Base‘𝑊) ∧ 𝐺:𝐾⟶dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
84, 6, 7syl2anc 693 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
9 ffdm 6062 . . . 4 ((𝐹𝐺):𝐾⟶(Base‘𝑊) → ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ dom (𝐹𝐺) ⊆ 𝐾))
109simpld 475 . . 3 ((𝐹𝐺):𝐾⟶(Base‘𝑊) → (𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊))
118, 10syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊))
12 simpl2 1065 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
136adantr 481 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺:𝐾⟶dom 𝐹)
14 fdm 6051 . . . . . . . . . 10 ((𝐹𝐺):𝐾⟶(Base‘𝑊) → dom (𝐹𝐺) = 𝐾)
158, 14syl 17 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom (𝐹𝐺) = 𝐾)
1615eleq2d 2687 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝑥 ∈ dom (𝐹𝐺) ↔ 𝑥𝐾))
1716biimpa 501 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝑥𝐾)
1813, 17ffvelrnd 6360 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝐺𝑥) ∈ dom 𝐹)
1918adantrr 753 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐺𝑥) ∈ dom 𝐹)
20 eldifi 3732 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
2120ad2antll 765 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
22 eldifsni 4320 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
2322ad2antll 765 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
24 eqid 2622 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
25 eqid 2622 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
26 eqid 2622 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
27 eqid 2622 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
28 eqid 2622 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2924, 25, 26, 27, 28lindfind 20155 . . . . 5 (((𝐹 LIndF 𝑊 ∧ (𝐺𝑥) ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
3012, 19, 21, 23, 29syl22anc 1327 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
31 f1fn 6102 . . . . . . . . . . 11 (𝐺:𝐾1-1→dom 𝐹𝐺 Fn 𝐾)
32313ad2ant3 1084 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 Fn 𝐾)
3332adantr 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺 Fn 𝐾)
34 fvco2 6273 . . . . . . . . 9 ((𝐺 Fn 𝐾𝑥𝐾) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3533, 17, 34syl2anc 693 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3635oveq2d 6666 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) = (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))))
3736eleq1d 2686 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})))))
38 simpl1 1064 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝑊 ∈ LMod)
39 imassrn 5477 . . . . . . . . . . 11 (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ ran 𝐹
40 frn 6053 . . . . . . . . . . . 12 (𝐹:dom 𝐹⟶(Base‘𝑊) → ran 𝐹 ⊆ (Base‘𝑊))
414, 40syl 17 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ran 𝐹 ⊆ (Base‘𝑊))
4239, 41syl5ss 3614 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
4342adantr 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
44 imaco 5640 . . . . . . . . . 10 ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})))
4515difeq1d 3727 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (dom (𝐹𝐺) ∖ {𝑥}) = (𝐾 ∖ {𝑥}))
4645imaeq2d 5466 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐺 “ (𝐾 ∖ {𝑥})))
47 df-f1 5893 . . . . . . . . . . . . . . . . 17 (𝐺:𝐾1-1→dom 𝐹 ↔ (𝐺:𝐾⟶dom 𝐹 ∧ Fun 𝐺))
4847simprbi 480 . . . . . . . . . . . . . . . 16 (𝐺:𝐾1-1→dom 𝐹 → Fun 𝐺)
49483ad2ant3 1084 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → Fun 𝐺)
50 imadif 5973 . . . . . . . . . . . . . . 15 (Fun 𝐺 → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
5149, 50syl 17 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
5246, 51eqtrd 2656 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
5352adantr 481 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
54 fnsnfv 6258 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐾𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5532, 54sylan 488 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5655difeq2d 3728 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
57 imassrn 5477 . . . . . . . . . . . . . . 15 (𝐺𝐾) ⊆ ran 𝐺
586adantr 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝐺:𝐾⟶dom 𝐹)
59 frn 6053 . . . . . . . . . . . . . . . 16 (𝐺:𝐾⟶dom 𝐹 → ran 𝐺 ⊆ dom 𝐹)
6058, 59syl 17 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ran 𝐺 ⊆ dom 𝐹)
6157, 60syl5ss 3614 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺𝐾) ⊆ dom 𝐹)
6261ssdifd 3746 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
6356, 62eqsstr3d 3640 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ (𝐺 “ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
6453, 63eqsstrd 3639 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
65 imass2 5501 . . . . . . . . . . 11 ((𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6664, 65syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6744, 66syl5eqss 3649 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
681, 25lspss 18984 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊) ∧ ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6938, 43, 67, 68syl3anc 1326 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
7017, 69syldan 487 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
7170sseld 3602 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
7237, 71sylbid 230 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
7372adantrr 753 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
7430, 73mtod 189 . . 3 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
7574ralrimivva 2971 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
76 simp1 1061 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝑊 ∈ LMod)
77 rellindf 20147 . . . . . 6 Rel LIndF
7877brrelexi 5158 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
79783ad2ant2 1083 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹 ∈ V)
80 simp3 1063 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾1-1→dom 𝐹)
81 dmexg 7097 . . . . . . 7 (𝐹 ∈ V → dom 𝐹 ∈ V)
8279, 81syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom 𝐹 ∈ V)
83 f1dmex 7136 . . . . . 6 ((𝐺:𝐾1-1→dom 𝐹 ∧ dom 𝐹 ∈ V) → 𝐾 ∈ V)
8480, 82, 83syl2anc 693 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐾 ∈ V)
85 fex 6490 . . . . 5 ((𝐺:𝐾⟶dom 𝐹𝐾 ∈ V) → 𝐺 ∈ V)
866, 84, 85syl2anc 693 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 ∈ V)
87 coexg 7117 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
8879, 86, 87syl2anc 693 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) ∈ V)
891, 24, 25, 26, 28, 27islindf 20151 . . 3 ((𝑊 ∈ LMod ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
9076, 88, 89syl2anc 693 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
9111, 75, 90mpbir2and 957 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LModclmod 18863  LSpanclspn 18971   LIndF clindf 20143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-slot 15861  df-base 15863  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lindf 20145
This theorem is referenced by:  lindfres  20162  f1linds  20164
  Copyright terms: Public domain W3C validator